0.引言
1.极端风浪流环境及风险评估
图 1 由WRF模式生成的台风“威马逊”风场图[3]
图 2 两百年重现期下珠三角风暴潮水平图[6]
图 3 预处理数据(蓝色)和模拟数据(红色)散点图(Hs、Ts和Vmax)[13]
图 4 有效波高和波浪方向玫瑰图对比(左为实测数据,右为预测数据)[21]
图 5 山东省风暴潮灾害指数地图[23]
2.桥梁基础局部冲刷研究
图 6 冲刷导致的桥梁水毁事故
图 7 桥梁局部冲刷多源实时感知监测系统[42]
图 8 圆柱墩冲刷形态示意图
图 9 抛石防护实验布置图[86]
3.墩柱水动力
图 10 桩帽顶部的承台锤形坡[94]
图 11不同边坡下的版圆锥形桥墩的瞬时流线[107]
图 12 深水高桩承台流固耦合数值模型示意图[112]
图 13 V形峡谷深水连续刚构桥示意图[115]
4.桥梁上部结构水动力作用
图 14 在极端波浪作用下的破坏模式和受力[131]
图 15 两种梁与波浪相互作用[143]:(a) t = 2.95 s;(b) t = 3.05 s;(c) t = 3.20 s;(d) t = 3.50 s
图 16 新型防波堤数值水槽示意图[148]
5.大跨度浮桥
图 17跨挪威Bj?rnafjorden峡湾浮桥结构概念[157]( 斜拉桥—浮式连续梁桥)
6.桥梁风浪联合作用研究
图 18 频谱的演变[176]
张明金, 博士,博士后(在读),研究员,硕士研究生导师,主要从事桥梁风工程、大跨度桥梁设计理论等方面的研究,负责西南交通大学深水大跨桥梁实验室的建设工作。发表期刊论文62篇,其中SCI收录32篇,EI收录18篇,授权国家发明专利8项,授权软件著作权3项目,主持国家重点研发计划子项目2项,主持国家自然科学基金1项,作为主持或主研人员先后开展了龙江大桥(世界最大跨度山区钢箱梁桥)、大渡河大桥(川藏第一桥)等20余座特大跨桥梁的抗风研究工作,作为负责人承担了世界最大跨度斜拉桥——常泰长江大桥横桥向恒载不对称结构力学行为研究。相关研究成果获省部级一等以上科技进步奖3项。联系邮箱:zhang108119@163.com。
[1] 林金波, 毛鸿飞, 吴光林, 等. 基于混合风场的南海台风浪数值模拟 [J]. 广东海洋大学学报, 2021, 41(06): 44-52.
[2] SHEN Z, WEI K. Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback [J]. Reliability Engineering & System Safety, 2021, 216.
[3] WU Z, CHEN J, JIANG C, et al. Simulation of extreme waves using coupled atmosphere-wave modeling system over the South China Sea [J]. Ocean Engineering, 2021, 221.
[4] BENETAZZO A, BARBARIOL F, BERGAMASCO F, et al. On the extreme value statistics of spatio-temporal maximum sea waves under cyclone winds [J]. Progress in Oceanography, 2021, 197.
[5] LI A, GUAN S, MO D, et al. Modeling wave effects on storm surge from different typhoon intensities and sizes in the South China Sea [J]. Estuarine, Coastal and Shelf Science, 2020, 235.
[6] JIAN W, LO E Y, PAN T C. Probabilistic storm surge hazard using a steady-state surge model for the Pearl River Delta Region, China [J]. Sci Total Environ, 2021, 801: 149606.
[7] WANG J, LIU J, WANG Y, et al. Spatiotemporal variations and extreme value analysis of significant wave height in the South China Sea based on 71-year long ERA5 wave reanalysis [J]. Applied Ocean Research, 2021, 113.
[8] SHANKAR C G, BEHERA M R. Numerical analysis on the effect of wave boundary condition in storm wave and surge modeling for a tropical cyclonic condition [J]. Ocean Engineering, 2021.
[9] SHANKAR C G, BEHERA M R. Improved Wind Drag Formulation for Numerical Storm Wave and Surge Modeling [J]. Dynamics of Atmospheres and Oceans, 2021, 93.
[10] WU W, LIU Z, ZHAI F, et al. A quantitative method to calibrate the SWAN wave model based on the whitecapping dissipation term [J]. Applied Ocean Research, 2021, 114.
[11] ZIEGER S, KEPERT J D, GREENSLADE D J M, et al. Assessment of tropical cyclone wave models for engineering applications [J]. Ocean Engineering, 2021, 225.
[12] JIANG H, BAI X, SONG G, et al. Comparing trivariate models for coastal winds and waves accounting for monthly seasonality [J]. Applied Ocean Research, 2021, 117.
[14] MA P, ZHANG Y. Modeling asymmetrically dependent multivariate ocean data using truncated copulas [J]. Ocean Engineering, 2022, 244.
[15] LIU G, CUI K, JIANG S, et al. A new empirical distribution for the design wave heights under the impact of typhoons [J]. Applied Ocean Research, 2021, 111.
[16] WANG J, LIU P L F. Numerical study on impacts of a concurrent storm-tide-tsunami event in Macau and Hong Kong [J]. Coastal Engineering, 2021, 170.
[17] QIAO C, MYERS A T. Surrogate modeling of time-dependent metocean conditions during hurricanes [J]. Natural Hazards, 2021, 110(3): 1545-63.
[18] KYPRIOTI A P, TAFLANIDIS A A, NADAL-CARABALLO N C, et al. Storm hazard analysis over extended geospatial grids utilizing surrogate models [J]. Coastal Engineering, 2021, 168.
[19] MENG F, SONG T, XU D, et al. Forecasting tropical cyclones wave height using bidirectional gated recurrent unit [J]. Ocean Engineering, 2021, 234.
[20] LEE J-W, IRISH J L, BENSI M T, et al. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning [J]. Coastal Engineering, 2021, 170.
[21] WEI Z. Forecasting wind waves in the US Atlantic Coast using an artificial neural network model: Towards an AI-based storm forecast system [J]. Ocean Engineering, 2021, 237.
[22] 朱佩京, 罗年学, 赵前胜. 基于随机森林模型的台风风暴潮最大增水预测 [J]. 测绘通报, 2021, (12): 71-4+82.
[23] WANG N, HOU Y, MO D, et al. Hazard assessment of storm surges and concomitant waves in Shandong Peninsula based on long-term numerical simulations [J]. Ocean & Coastal Management, 2021, 213.
[24] TIAN Z, ZHANG Y. Numerical estimation of the typhoon-induced wind and wave fields in Taiwan Strait [J]. Ocean Engineering, 2021, 239.
[25] WANG S, MU L, QI M, et al. Quantitative risk assessment of storm surge using GIS techniques and open data: A case study of Daya Bay Zone, China [J]. J Environ Manage, 2021, 289: 112514.
[26] NOFAL O M, VAN DE LINDT J W, DO T Q, et al. Methodology for Regional Multihazard Hurricane Damage and Risk Assessment [J]. Journal of Structural Engineering, 2021, 147(11).
[27] TüRKBEN A, GüNEY M ?. Experimental Investigation of Scour Hole Characteristics for Different Shapes of Piers Caused by Flood Hydrograph Succeeding Steady Flow [J]. Teknik Dergi, 2021.
[28] YAO W, DRAPER S, AN H, et al. Experimental study of local scour around submerged compound piles in steady current [J]. Coastal Engineering, 2021, 165.
[29] 王浩, 陈铭, 彭国平, 等. 基于 SFM 方法的不同倾角桥墩绕流局部冲刷特性试验 [J]. 2021.
[30] GAUTAM P, ELDHO T, BEHERA M. Effects of pile-cap elevation on scour and turbulence around a complex bridge pier [J]. International Journal of River Basin Management, 2021: 1-15.
[31] KADONO T, KATO S, OKAZAKI S, et al. Effects of Dynamical Change in Water Level on Local Scouring around Bridge Piers Based on In-Situ Experiments [J]. Water, 2021, 13(21): 3015.
[32] BADUNA KO?YI?IT M, KARAKURT O, AKAY H. Effect of various flow, sediment and geometrical parameters on partially or fully submerged deck scour [J]. SN Applied Sciences, 2021, 3(3): 1-17.
[33] BENTO A M, VISEU T, PêGO J P, et al. Experimental Characterization of the Flow Field around Oblong Bridge Piers [J]. Fluids, 2021, 6(11): 370.
[34] GAUTAM S, DUTTA D, BIHS H, et al. Three-dimensional Computational Fluid Dynamics modelling of scour around a single pile due to combined action of the waves and current using Level-Set method [J]. Coastal Engineering, 2021, 170: 104002.
[35] 程永舟, 姜松, 吕行, 等. 波流共同作用下大直径圆柱局部冲刷试验研究 [J]. 应用基础与工程科学学报, 2021, 29(3): 11.
[36] JAIN R, LODHI A S, OLIVETO G, et al. Influence of Cohesion on Scour at Piers Founded in Clay–Sand–Gravel Mixtures [J]. Journal of Irrigation and Drainage Engineering, 2021, 147(10): 04021046.
[37] ZIRKLE J. Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events [J]. Water, 2021, 13.
[38] FRANCESCO S D. Investigation of Local Scouring around Hydrodynamic and Circular Pile Groups under the Influence of River Material Harvesting Pits [J]. Water, 2021, 13.
[39] CANTERO-CHINCHILLA F N, ALMEIDA G D, MANES C. Temporal evolution of clear-water local scour at bridge piers with flow-dependent debris accumulations [J]. Journal of Hydraulic Engineering, 2021.
[40] PALERMO M, PAGLIARA S, ROY D. Effect of debris accumulation on scour evolution at bridge pier in bank proximity [J]. Journal of Hydrology and Hydromechanics, 2021, 69(1): 108-18.
[41] LIN Y B, LEE F Z, CHANG K C, et al. The Artificial Intelligence of Things Sensing System of Real-Time Bridge Scour Monitoring for Early Warning during Floods [J]. Sensors, 2021, 21(14): 4942.
[42] 蒋兵, 郭健, 王金权, 等. 基于多源监测的杭州湾跨海大桥冲刷监测系统 [J].
[43] LIU W, ZHOU W, LI H. Bridge scour estimation using unconstrained distributed fiber optic sensors [J]. Journal of Civil Structural Health Monitoring, 2021: 1-10.
[44] LIANG T-C, WU P-T, HUANG H-S, et al. Design a bridge scour monitoring system by pressing the fiber Bragg grating with a rolling pulley mechanism [J]. Microsystem Technologies, 2021, 27(4): 1211-6.
[45] GHORBANI E, SVECOVA D, THOMSON D J, et al. Bridge pier scour level quantification based on output-only Kalman filtering [J]. Structural Health Monitoring, 2021: 14759217211053781.
[46] BELMOKHTAR M, SCHMIDT F, TURE SAVADKOOHI A, et al. Scour monitoring of a bridge pier through eigenfrequencies analysis [J]. SN Applied Sciences, 2021, 3(3): 1-14.
[47] 杨婷婷, 李岩, 林雪琦. 基于车辆制动激励和小波包能量分析的连续梁桥基础冲刷识别方法 [J]. 中国公路学报, 2021, 34(4): 10.
[48] LI Z, TANG F, CHEN Y, et al. Field experiment and numerical verification of the local scour depth of bridge pier with two smart rocks [J]. Engineering Structures, 2021, 249: 113345.
[49] ZHANG H, LI Z, CHEN G, et al. UAV-based smart rock localization for bridge scour monitoring [J]. Journal of Civil Structural Health Monitoring, 2021, 11(2): 301-13.
[50] HAMIDIFAR H, ZANGANEH-INALOO F, CARNACINA I. Hybrid scour depth prediction equations for reliable design of bridge piers [J]. Water, 2021, 13(15): 2019.
[51] NI X, XUE L, AN C. Experimental investigation of scour around circular arrangement pile groups [J]. Ocean Engineering, 2021, 219: 108096.
[52] YAZDANFAR Z, LESTER D, ROBERT D, et al. A novel CFD-DEM upscaling method for prediction of scour under live-bed conditions [J]. Ocean Engineering, 2021, 220: 108442.
[53] LI J, FUHRMAN D R, KONG X, et al. Three-dimensional numerical simulation of wave-induced scour around a pile on a sloping beach [J]. Ocean Engineering, 2021, 233: 109174.
[54] KAVEH K, MAI D N, PHAM Q B, et al. A hybrid feed-forward neural network with grasshopper optimization for observing pattern of scour depth around bridge piers [J]. Arabian Journal of Geosciences, 2021, 14(22): 1-11.
[55] AHMADIANFAR I, JAMEI M, KARBASI M, et al. A novel boosting ensemble committee-based model for local scour depth around non-uniformly spaced pile groups [J]. Engineering with Computers, 2021: 1-23.
[56] KHOSRAVI K, KHOZANI Z S, MAO L. A comparison between advanced hybrid machine learning algorithms and empirical equations applied to abutment scour depth prediction [J]. Journal of Hydrology, 2021, 596: 126100.
[57] KOHANSARBAZ A, KOHANSARBAZ A, YAGHOUBI B, et al. An integration of adaptive neuro-fuzzy inference system and firefly algorithm for scour estimation near bridge piers [J]. Earth Science Informatics, 2021, 14(3): 1399-411.
[58] SREEDHARA B M, PATIL A P, PUSHPARAJ J, et al. Application of gradient tree boosting regressor for the prediction of scour depth around bridge piers [J]. Journal of Hydroinformatics, 2021, 23(4): 849–63.
[59] DANESHFARAZ R, ABAM M, HEIDARPOUR M, et al. The impact of cables on local scouring of bridge piers using experimental study and ANN, ANFIS algorithms [J]. Water Supply, 2022, 22(1): 1075-93.
[60] KAYADELEN C, ALTAY G, ?NAL S, et al. Sequential minimal optimization for local scour around bridge piers [J]. Marine Georesources & Geotechnology, 2021: 1-15.
[61] ANNAD M, LEFKIR A, MAMMAR-KOUADRI M, et al. Development of a local scour prediction model clustered by soil class [J]. Water Practice & Technology, 2021, 16(4): 1159-72.
[62] O?UZ K, BOR A. Prediction of Local Scour around Bridge Piers Using Hierarchical Clustering and Adaptive Genetic Programming [J]. Applied Artificial Intelligence, 2021: 1-26.
[63] WANG C, YUAN Y, ZHU W, et al. A probabilistic strategy to evaluate scour around bridge deepwater foundations considering a reliability assessment [J]. Marine Georesources & Geotechnology, 2021: 1-13.
[64] SHAHRIAR A R, MONTOYA B M, ORTIZ A C, et al. Quantifying probability of deceedance estimates of clear water local scour around bridge piers [J]. Journal of Hydrology, 2021, 597: 126177.
[65] 梁发云, 梁轩, 张浩. 局部冲刷场地桩基桥梁地震响应简化分析及离心振动台验证 [J]. 岩土工程学报, 2021, 43(10): 11.
[66] 何海峰, 魏凯, 何成. 考虑冲刷影响的川藏线连续梁桥横向地震易损性分析 [J]. 防灾减灾工程学报.
[67] REN J, SONG J, ELLINGWOOD B R. Reliability assessment framework of deteriorating reinforced concrete bridges subjected to earthquake and pier scour [J]. Engineering Structures, 2021, 239: 112363.
[68] WEI K, HE H, ZHANG J, et al. An endurance time method-based fragility analysis framework for cable-stayed bridge systems under scour and earthquake [J]. Ocean Engineering, 2021, 232: 109128.
[69] WANG J, HOU Z, SUN H, et al. Local scour around a bridge pier under ice-jammed flow condition–an experimental study [J]. Journal of Hydrology and Hydromechanics, 2021, 69(3): 275-87.
[70] WANG J, WANG K, FANG B-H, et al. A revisit of the local scour around bridge piers under an ice-covered flow condition—An experimental study [J]. Journal of Hydrodynamics, 2021, 33(5): 928-37.
[71] VALELA C, SIRIANNI D A, NISTOR I, et al. Bridge Pier Scour under Ice Cover [J]. Water, 2021, 13(4): 536.
[72] YANG Y, XIONG X, MELVILLE B W, et al. Dynamic morphology in a bridge-contracted compound channel during extreme floods: Effects of abutments, bed-forms and scour countermeasures [J]. Journal of Hydrology, 2021, 594: 125930.
[73] ENOMOTO T, HORIKOSHI K, ISHIKAWA K, et al. Levee damage and bridge scour by 2019 typhoon Hagibis in Kanto Region, Japan [J]. Soils and Foundations, 2021, 61(2): 566-85.
[74] HABIB I, MOHTAR W H M W, EL-SHAFIE A, et al. Potential of Epoxidised Natural Rubber Alumina Nanoparticles (ENRAN) sheet as local bridge pier scour countermeasure [J]. Ain Shams Engineering Journal, 2021, 12(2): 1255-65.
[75] SABBAGH-YAZDI S-R, BAVANDPOUR M. Introducing ring collars and effective spiral threading elevation for cylindrical pier scour control [J]. Marine Georesources & Geotechnology, 2021: 1-16.
[76] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究 [J]. 太阳能学报, 42(9): 338-43.
[77] FAROOQ R, GHUMMAN A R, AHMED A, et al. Performance Evaluation of Scour Protection around a Bridge Pier through Experimental Approach [J]. Tehni?ki vjesnik, 2021, 28(6): 1975-82.
[78] SEHAT M, KAMANBEDAST A A, BORDBAR A, et al. The study of convergent and divergent slots on scour reduction around abutment [J]. Ain Shams Engineering Journal, 2021, 12(2): 1241-53.
[79] SAAD N Y, FATTOUH E M, MOKHTAR M. Effect of L-shaped slots on scour around a bridge abutment [J]. Water Practice & Technology, 2021, 16(3): 935-45.
[80] ALY A M, DOUGHERTY E. Bridge pier geometry effects on local scour potential: A comparative study [J]. Ocean Engineering, 2021, 234: 109326.
[81] YANG F, QU L, TANG G, et al. Local scour around a porous surface-piercing square monopile in steady current [J]. Ocean Engineering, 2021, 223: 108716.
[82] RANJBAR-ZAHEDANI M, KESHAVARZI A, KHABBAZ H, et al. Optimizing flow diversion structure as an effective pier-scour countermeasure [J]. Journal of Hydraulic Research, 2021, 59(6): 963-76.
[83] MALIK A, SINGH S, KUMAR M. Experimental analysis of scour under circular pier [J]. Water Supply, 2021, 21(1): 422-30.
[84] ABDELMOATY M S, ZAYED M. Using side flow jets as a scour countermeasure downstream of a sluice gate [J]. Beni-Suef University Journal of Basic and Applied Sciences, 2021, 10(1): 1-8.
[85] TUAMA AL-AWADI A. Aspects of Downstream Bed Sill Location for Investigating the Countermeasure with Local Scour around Cylindrical Bridge Piers [J]. Smart Science, 2021, 9(2): 113-20.
[86] 齐梅兰, 周马生, 汤改春. 群桩冲刷及抛石级配与厚度对防护效果的影响 [J]. 水利学报, 2021, 52(6): 723-30.
[87] 黎蔚杰, 张琪, 廖晨聪, 等. 孤立波和海流作用下单桩基础局部冲刷及保护的数值分析 [J]. 上海交通大学学报, 2021, 55(6): 631-7.
[88] ZHANG Q, TANG G, LU L, et al. Scour protections of collar around a monopile foundation in steady current [J]. Applied Ocean Research, 2021, 112: 102718.
[89] SANADGOL E, HEIDARPOUR M, MOHAMMADPOUR R. Reduction of local scouring at round-nosed rectangular piers using a downstream bed sill [J]. Journal of the South african institution of civil engineering, 2021, 63(3): 62-70.
[90] 李东洋, 郭馨艳, 高康平, 等. 波浪力作用下环岛桥梁受力特性研究 [J]. 中外公路, 2021, 41(02): 91-6.
[91] HAN J, ZHU B, LU B, et al. The influence of incident angles and length-diameter ratios on the round-ended cylinder under regular wave action [J]. Ocean Engineering, 2021, 240.
[92] 干桂轩, 孙亮, 岳磊, et al. 规则波对大直径群桩作用的数值模拟研究 [J]. 水利水运工程学报, 2020, (06): 121-6.
[93] 董伟良, 诸裕良, 姚文伟, 等. 跨海桥梁高桩承台复合桥墩波浪荷载分析 [J]. 公路, 2021, 66(03): 105-10.
[94] WANG Z, QIU W. Characteristics of wave forces on pile group foundations for sea-crossing bridges [J]. Ocean Engineering, 2021, 235.
[95] 魏凯, 姜沫臣, 洪杰. 破碎波作用下圆端形桥墩受力特性数值模拟 [J]. 海洋工程, 2021, 39(05): 111-8.
[96] 赵文玉, 魏凯, 姜沫臣, 等. 破碎波荷载对比分析及计算研究; proceedings of the 第30届全国结构工程学术会议, 中国广东广州, F, 2021 [C].
[97] QU S, LIU S, ONG M C. An evaluation of different RANS turbulence models for simulating breaking waves past a vertical cylinder [J]. Ocean Engineering, 2021, 234.
[98] HONG J, WEI K, SHEN Z, et al. Experimental study of breaking wave loads on elevated pile cap with rectangular cross-section [J]. Ocean Engineering, 2021, 227.
[99] HONG J, WEI K, XU B. Experimental Study of Breaking Wave Loads on Sea-Crossing Bridges Piers [M]. Earth and Space 2021. 2021: 271-9.
[100] 岳磊. 极端波浪在圆柱结构涌高的试验研究 [D]; 大连理工大学, 2021.
[101] GAO Y, ZHU J, QU X, et al. Numerical simulation of wave run-up on three cylinders in an equilateral-triangular arrangement [J]. Ocean Engineering, 2021, 233.
[102] LIU Z, ZHAO W, WAN D. CFD study of wave interaction with single and two tandem circular cylinders [J]. Ocean Engineering, 2021, 239.
[103] 时健, 蒋宗南, 孔德森. 水流荷载作用下海洋群桩受力特性研究 [J]. 青岛理工大学学报, 2021, 42(03): 63-71.
[104] 陈泽富. 急流条件下钢栈桥水流力数值模拟研究 [J]. 公路, 2021, 66(10): 125-9.
[105] 商宇薇, 姜锋. 串列三圆柱桥墩间距与交角对水流的偏导作用 [J]. 水资源开发与管理, 2021, (10): 74-9.
[106] 高晨晨, 蔡超英, 张志杰. 平原河道圆端形桥墩阻水特性研究 [J]. 水利水电技术(中英文), 2021, 52(S2): 269-74.
[107] AGHAEE-SHALMANI Y, HAKIMZADEH H. Large eddy simulation of flow around semi-conical piers vertically mounted on the bed [J]. Journal of Environmental Fluid Mechanics, 2021.
[108] 赵秋红, 许梦凡, 董硕. 地震-波浪耦合作用下考虑相位差影响的深水桥墩动力响应分析 [J]. 中国公路学报, 2021, 34(05): 86-98.
[109] 赵密, 苏成坤, 王丕光, 等. 地震作用下水-结构-土动力相互作用分析 [J]. 工程力学, 2022, (03): 51-63.
[110] 吴堃. 地震作用下水-桥墩相互作用机理及水下振动台试验协调相似律研究 [D]; 天津大学, 2019.
[111] LIANG F, LIANG X, WANG C, et al. Simplified Added-Mass Model for Evaluating the Response of Rectangular Hollow Bridge Piers under Earthquakes [J]. Journal of Bridge Engineering, 2021, /26(10).
[112] ZHANG J, WEI K, LI J. Integrated assessment of the hydrodynamic added mass of the deep-water pile-cap foundation considering pile group - pile cap interaction [J]. Ocean Engineering, 2022, 244.
[113] WANG. Analytical Solution of Earthquake-Induced Hydrodynamic Pressure on Arrays of Circular Cylinders Considering High-Order Scattered Waves [J]. Journal of Engineering Mechanics, 2021, 147(9).
[114] TU W, GU X, CHEN H-P, et al. Time domain nonlinear kinematic seismic response of composite caisson-piles foundation for bridge in deep water [J]. Ocean Engineering, 2021, 235.
[115] ZHANG J, WEI K, GAO L, et al. Effect of V-shape canyon topography on seismic response of deep-water rigid-frame bridge based on simulated ground motions [J]. Structures, 2021, 33: 1077-95.
[116] CHEN B, DU Y, SHI Y, et al. Seismic Analysis of Isolated Continuous Bridge considering Influence of Seawater and Site Condition [J]. Shock and Vibration, 2021, 2021: 1-17.
[117] GUO J, WANG K, LIU H, et al. Influence of Water-Structure and Soil-Structure Interaction on Seismic Performance of Sea-Crossing Continuous Girder Bridge [J]. Advances in Civil Engineering, 2021, 2021: 1-12.
[118] ZHANG C, LU J, WANG P, et al. Seismic fragility analysis of sea-crossing continuous rigid frame bridges based on fuzzy failure [J]. Structures, 2021, 34: 120-34.
[119] 殷旭东, 陈维田. 库区大跨度墩-塔-梁固结体系斜拉桥抗震性能研究 [J]. 公路, 2021, 66(03): 140-4.
[120] ZHANG J, WEI K, QIN J. Resilience and Economic Loss Assessment of Highway Bridges in Deep Reservoir under Near-Fault Ground Motions [J]. Journal of Bridge Engineering, 2021, 26(3).
[121] DENG Y, GE S, TANG K, et al. Effects of Pounding at Expansion Joints on Seismic Responses of Long-Span Deep-Water Bridge with Multiple Approach Spans [J]. Arabian Journal for Science and Engineering, 2021.
[122] 吴文朋, 刘思思, 梁鹏, 等. 动水压力和PSI对深水高墩桥梁抗震性能的影响 [J]. 防灾减灾工程学报, 2021, 41(01): 67-74.
[123] 赵金钢, 杜斌, 孔德文, 等. 近场地震作用下库区深水钢筋混凝土高墩地震易损性分析 [J]. 防灾减灾工程学报, 2021, 41(01): 55-66.
[124] 王德斌, 李新, 孙治国, 等. 海底地震动对近海桥梁易损性影响 [J]. 振动与冲击, 2021, 40(17): 131-6+74.
[125] 马安财, 谭平, 王社良, 等. 动水压下减震连续梁桥随机优化及减震性能研究 [J]. 振动与冲击, 2021, 40(05): 163-9.
[126] WANDJI ZOUMB P A, LI X, WANG M. Effects of Earthquake-Induced Hydrodynamic Force on Train–Bridge Interactions [J]. Journal of Bridge Engineering, 2022, 27(4).
[127] YANG Z, HUANG B, KANG A, et al. Experimental study on the solitary wave-current interaction and the combined forces on a vertical cylinder [J]. Ocean Engineering, 2021, 236.
[128] LIU M, LIU H, MA J, et al. Experimental study of the wave load on the main pier of Huangmaohai Bridge under wave-current coupling effect [J]. IOP Conference Series: Earth and Environmental Science, 2021, 621(1).
[129] 陈华. 波、流联合作用下深水桩基础动力响应特性分析 [D]; 绍兴文理学院, 2021.
[130] 中国桥梁工程学术研究综述·2021 [J]. 中国公路学报, 2021, 34(02): 1-97.
[131] YUAN P, ZHU D, DONG Y. Spatial failure mechanism of coastal bridges under extreme waves using high-efficient pseudo-fluid-structure interaction solution scheme [J]. Ocean Engineering, 2021, 240.
[132] XU Z, MELVILLE B, NANDASENA N A K, et al. Tsunami loads on slab bridges [J]. Coastal Engineering, 2021, 165.
[133] HUANG B, REN Q, CUI X, et al. Wave characteristics and spectrum for Pingtan Strait Bridge location [J]. Ocean Engineering, 2021, 219.
[134] CHEN X, CHEN Z, XU G, et al. Review of wave forces on bridge decks with experimental and numerical methods [J]. Advances in Bridge Engineering, 2021, 2(1).
[135] MOIDEEN R, BEHERA M R. Numerical investigation of extreme wave impact on coastal bridge deck using focused waves [J]. Ocean Engineering, 2021, 234.
[136] WANG J, XUE S, XU G. A Hybrid Surrogate Model for the Prediction of Solitary Wave Forces on the Coastal Bridge Decks [J]. Infrastructures, 2021, 6(12).
[137] FANG Q, LIU J, HONG R, et al. Experimental investigation of focused wave action on coastal bridges with box girder [J]. Coastal Engineering, 2021, 165.
[138] 左光升. 极端波浪作用下近海箱梁桥上部结构受力研究 [D]; 武汉科技大学, 2021.
[139] FARVIZI F, MELVILLE B W, SHAMSELDIN A Y, et al. Experimental investigation of tsunami bore-induced forces and pressures on skewed box section bridges [J]. Ocean Engineering, 2021, 224.
[140] CHEN X, XU G, LIN C, et al. A comparative study on lateral displacements of movable T-deck and Box-deck under solitary waves [J]. Structures, 2021, 34: 1614-35.
[141] CHEN X, XU W, LIN C, et al. A comparative study on wave-deck interactions of T-type and box girder decks under regular waves [J]. Ocean Engineering, 2021, 231.
[142] YANG Z, HUANG B, ZHU B, et al. Comparative Study of Tsunami-Like Wave-Induced Forces on Medium-Scale Models of Box Girder and T-Girder Bridges [J]. Journal of Bridge Engineering, 2021, 26(2).
[143] 杨志莹, 黄博, 段伦良, 等. 极端波浪作用下T梁与箱梁受力研究 [J]. 西南交通大学学报, 2021, 56(01): 12-9.
[144] GRECO F, LONETTI P, NEVONE BLASI P. Impact mitigation measures for bridges under extreme flood actions [J]. Journal of Fluids and Structures, 2021, 106.
[145] QIAO D, MACKAY E, YAN J, et al. Numerical simulation with a macroscopic CFD method and experimental analysis of wave interaction with fixed porous cylinder structures [J]. Marine Structures, 2021, 80.
[146] 加攀星. 波浪作用下开孔双壁钢围堰波浪力研究 [D]; 武汉科技大学, 2021.
[147] GAO H, SONG Y, FANG Q, et al. Wave forces on box-girder-type bridge deck located behind trench or breakwater [J]. Ocean Engineering, 2021, 237.
[148] XUE S, XU Y, XU G, et al. A novel tri-semicircle shaped submerged breakwater for mitigating wave loads on coastal bridges part I: Efficacy [J]. Ocean Engineering, 2022, 245.
[149] QU K, SUN W Y, KRAATZ S, et al. Effects of floating breakwater on hydrodynamic load of low-lying bridge deck under impact of cnoidal wave [J]. Ocean Engineering, 2020, 203.
[150] 殷雪霜, 魏凯, 周聪. 考虑浮式防波堤影响的圆柱桥墩波浪作用数值模拟; proceedings of the 第30届全国结构工程学术会议, 中国广东广州, F, 2021 [C].
[151] HE Y, JI W, YING J, et al. Hydrodynamic performance of a continuous floating bridge with heave plates [J]. Applied Ocean Research, 2021, 108: 102442.
[152] KV?LE K A, ?ISETH O, UBERTINI F. Dynamic Response of an End-Supported Pontoon Bridge due to Wave Excitation: Numerical Predictions versus Measurements [J]. Shock and Vibration, 2021, 2021: 1-18.
[153] DAI J, LEIRA B J, MOAN T, et al. Inhomogeneous wave load effects on a long, straight and side-anchored floating pontoon bridge [J]. Marine Structures, 2020, 72.
[154] CHENG Z, GAO Z, MOAN T. Extreme responses and associated uncertainties for a long end-anchored floating bridge [J]. Engineering Structures, 2020, 219: 110858.
[155] MOAN T, EIDEM M E. Floating bridges and submerged tunnels in norway-the history and future outlook; proceedings of the WCFS, Singerpore, F, 2019 [C]. Springer.
[156] FENERCI A, XU Y, ?ISETH O. Numerical Studies on the Dynamic Behavior of a Superlong Curved Pontoon Bridge under Wind and Wave Actions [Z]. Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015). 2019: 5872-9.10.7712/120119.7352.19214
[157] 程斌. 深水浮式桥梁研究应用进展 [J]. 土木工程学报, 2021, 54(2).
[158] RAJABI M, GHASSEMI H, GHAFARI H, et al. Homogeneous Wave Load Effects on the Connections of Main Parts of Side-Anchored Straight Floating Bridge [J]. Mathematical Problems in Engineering, 2021, 2021: 1-15.
[159] CHENG, ZHENGSHUN, GAO, et al. Wave load effect analysis of a floating bridge in a fjord considering inhomogeneous wave conditions [J]. Engineering Structures, 2018.
[160] CHENG Z, SVANGSTU E, MOAN T, et al. Assessment of inhomogeneity in environmental conditions in a Norwegian fjord for design of floating bridges [J]. Ocean Engineering, 2021, 220.
[161] DAI J, STEFANAKOS C, LEIRA B J, et al. Effect of Modelling Inhomogeneous Wave Conditions on Structural Responses of a Very Long Floating Bridge [J]. Journal of Marine Science and Engineering, 2021, 9(5).
[162] CHENG Z, SVANGSTU E, ZHEN G, et al. Field Measurements of Inhomogeneous Wave Conditions in Bjrnafjorden [J]. Journal of Waterway Port Coastal and Ocean Engineering, 2019, 145(1): 05018008.
[163] DAI J, LEIRA B J, MOAN T, et al. Effect of wave inhomogeneity on fatigue damage of mooring lines of a side-anchored floating bridge [J]. Ocean Engineering, 2021, 219.
[164] XIANG S, CHENG B, TANG M, et al. Effects of spatial inhomogeneity of wave excitations on structural behaviors of multi-span floating bridges [J]. Ocean Engineering, 2022, 243.
[165] WAN L, DAI J, JIANG D, et al. Parametric study and dynamic response analysis of three single curved discrete pontoon floating bridges [J]. Ships and Offshore Structures, 2021: 1-14.
[166] WEI K, ZHANG F, ZHANG M, et al. Influence of the sag-to-span ratio on the dynamic response of a long-span bridge suspended from floating towers under wave and wind loads [J]. Ships and Offshore Structures, 2021, (5): 1-19.
[167] 汤淼. 深水浮式桥梁浮箱式承台水动力特性分析 [J]. 世界桥梁, 2021, 49(6).
[168] 苗玉基, 陈徐均, 叶永林, 等. 波流联合作用下通载浮桥动力特性研究 [J]. 船舶力学, 2021: 228-37.
[169] MIAO Y J, CHEN X J, YE Y L, et al. Numerical modeling and dynamic analysis of a floating bridge subjected to wave, current and moving loads [J]. Ocean Engineering, 2021, 225(3): 108810.
[170] LIU J, LIU Z, GUO A, et al. Experimental study on the evolution of mechanically generated waves mixed with space non-uniform wind-driven waves [J]. Ocean Engineering, 2021, 232.
[171] 柯世堂, 王硕, 张伟, 等. 风、浪、流多场耦合作用波浪传播演化机理对比分析 [J]. 哈尔滨工程大学学报, 2021, 42(09): 1312-20.
[172] QU K, WEN B H, REN X Y, et al. Numerical investigation on hydrodynamic load of coastal bridge deck under joint action of solitary wave and wind [J]. Ocean Engineering, 2020, 217.
[173] WEN B H, QU K, LAN G Y, et al. Numerical study on hydrodynamic characteristics of coastal bridge deck under joint action of regular waves and wind [J]. Ocean Engineering, 2022, 245.
[174] 崔圣爱, 郭晨, 张猛, 等. 风-浪作用下跨海大桥列车-桥梁系统耦合振动仿真研究 [J]. 铁道学报, 2021, 43(07): 138-43.
[175] 李宛玲, 张琪, 周香莲. 风浪荷载共同作用下的海洋桩基动力响应 [J]. 上海交通大学学报, 2021, 55(09): 1116-25.
[176] CHEN Y, PENG W. Time history analysis method for the combined action of extreme fluctuating wind and wave on the maximum double cantilever structure of rigid frame bridge considering the influence of flow velocity [J]. IOP Conference Series: Earth and Environmental Science, 2021.
[177] 薛思思. 大型跨海斜拉桥相关风-浪的联合作用与相干函数 [D]; 大连理工大学, 2021.
[178] YU E, WEI H, HAN Y, et al. Application of time series prediction techniques for coastal bridge engineering [J]. Advances in Bridge Engineering, 2021, 2(1).
0人已收藏
0人已打赏
免费4人已点赞
分享
桥梁工程
返回版块19.41 万条内容 · 627 人订阅
回帖成功
经验值 +10
全部回复(3 )
只看楼主 我来说两句谢谢楼主分享
回复 举报
谢谢分享
回复 举报