工艺简介
CCAS工艺,即连续循环曝气系统工艺(Continuous Cycle Aeration System),是一种连续进水式SBR曝气系统。这种工艺是在SBR(Sequencing Batch Reactor,序批式处理法)的基础上改进而成。1968年澳大利亚的新南威尔士大学与美国ABJ公司合作开发了“采用间歇反应器体系的连续进水,周期排水,延时曝气好氧活性污泥工艺”。1986年美国国家环保局正式承认CCAS工艺属于革新代用技术(I/A),成为目前最先进的电脑控制的生物除磷、脱氮处理工艺。
CCAS工艺对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是CCAS反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,出水可达标排放。
经预处理的污水连续不断地进入反应池前部的预反应池,在该区内污水中的大部分可溶性BOD被活性污泥微生物吸附,并一起从主、预反应区隔墙下部的孔眼以低流速(0.03-0.05m/min)进入反应区。在主反应区内依照“曝气(Aeration)、闲置(Idle)、沉淀(Settle)、排水(Decant)”程序周期运行,使污水在“好氧-缺氧”的反复中完成去碳、脱氮,和在“好氧-厌氧”的反复中完成除磷。各过程的历时和相应设备的运行均按事先编制,并可调整的程序,由计算机集中自控。
独特优势
(1)曝气时,污水和污泥处于完全理想混合状态,保证了BOD、COD的去除率,去除率高达95%。
(2)“好氧-缺氧”及“好氧-厌氧”的反复运行模式强化了磷的吸收和硝化-反硝化作用,使氮、磷去除率达80%以上,保证了出水指标合格。
(3)沉淀时,整个CCAS反应池处于完全理想沉淀状态,使出水悬浮物(SS)极低,低的SS值也保证了磷的去除效果。
适用范围
CASS工艺可应用于大型、中型及小型污水处理工程,比SBR工艺适用范围更广泛;连续进水的设计和运行方式,一方面便于与前处理构筑物相匹配,另一方面控制系统比SBR工艺更简单。
对大型污水处理厂而言,CASS反应池设计成多池模块组合式,单池可独立运行。当处理水量小于设计值时,可以在反应地的低水位运行或投入部分反应池运行等多种灵活操作方式;由于CASS系统的主要核心构筑物是CASS反应池,如果处理水量增加,超过设计水量不能满足处理要求时,可同样复制CASS反应池,因此CASS法污水处理厂的建设可随企业的发展而发展,它的阶段建造和扩建较传统活性污泥法简单得多。
工艺比较
与传统活性污泥法相比
①建设费用低。省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省20%—30%。工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CAS曝气池、污泥池,布局紧凑,占地面积可减少35%。(以10万吨的城市污水处理厂为例:传统活性污泥法的总投资约1.5亿,CASS法总投资约1.1亿;传统活性污泥法占地面积约为180亩,CASS法占地面积约120亩。)
②运行费用省。由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运行费用可节省10%—25%。
③有机物去除率高,出水水质好,不仅能有效去除污水中有机碳源污染物,而且具有良好的脱氮除磷功能。(对城市污水,进水COD为400mg/L时,出水小于30mg/L以下。)
④管理简单,运行可靠,不易发生污泥膨胀,污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠。
⑤污泥产量低,性质稳定,便于进一步处理与处置。
与间隙进水的SBR或CAST相比
①CASS反应池由预反应区和主反应区组成,预反应区控制在缺氧状态,因此,提高了对难降解有机物的去除效果;
②CASS进水是连续的,因此进水管道上无电磁阀等控件元件,单个池子可独立运行,而SBR或CAST进水过程是间歇的,应用中一般要2个或2个以上交替使用,增加了控制系统的复杂程度。
③CASS每个周期的排水量一般不超过池内总水量的1/3,而SBR则为1/2—3/4;CASS抗冲击能力较好。
④CASS比CAST系统简单,但脱氮除磷效果不如后者。
工艺缺点
CASS工艺具有许多优点,然而任何一个工艺都不是十全十美的,CASS工艺也必然存在一些问题。CASS工艺为单一污泥悬浮生长系统,利用同一反应器中的混合微生物种群完成有机物氧化、硝化、反硝化和除磷。多种处理功能的相互影响在实际应用中限制了其处理效能,也给控制提出了非常严格的要求,工程中难以实现工艺的稳定、高效的运行。总结起来,CASS工艺主要存在以下几个方面的问题。运行中存在问题:
(1)微生物种群之间的复杂关系有待研究
CASS系统的微生物种群结构与常规活性污泥法不同,菌群主要由硝化菌、反硝化菌、聚磷菌和异氧型好氧菌组成。目前对非稳态CASS系统中微生物种群之间的复杂的生存竞争和生态平衡关系尚不甚了解,CASS工艺理论只是从工艺过程进行一些分析探讨,而理清微生物种群之间的关系对CASS工艺的优化运行是大有好处的,因此仍需加强对这方面的理论研究工作。
(2)生物脱氮效率难以提高
一方面硝化反应难以进行完全,硝化细菌是一种化能自养菌,有机物降解由异养细菌完成。当两种细菌混合培养时,由于存在对底物和DO的竞争,硝化菌的生长将受到限制,难以成为优势种群,硝化反应被抑制。此外,固定的曝气时间也可能会使得硝化不彻底。另一方面就是反硝化反应不彻底。CASS工艺有约20%的硝态氮通过回流污泥进行反硝化,其余的硝态氮则通过同步硝化反硝化和沉淀、闲置期污泥的反硝化实现,其效果不理想也是众所周知的。在沉淀、闲置期中,由于污泥与废水不能良好的进行混合,废水中部分硝态氮不能与反硝化细菌接触,故不能被还原。此外,在这一时期,由于有机物己充分降解,反硝化所需的碳源不足,也限制了反硝化效率的进一步提高。这两方面的原因使得CASS工艺脱氮效率难以提高。
(3)除磷效率难以提高
污泥在生物选择器中的释磷过程受到回流混合液中硝态氮浓度的影响比较大,在CASS工艺系统中难以继续提高除磷效率。
(4)控制方式较为单一
目前在实际应用中的CASS工艺基本上都是以时序控制为主的,其缺点是显而易见的,因为污水的水质不是一成不变的,因此采用固定不变的反应时间必然不是最佳选择。
来源:环保之家论坛
0人已收藏
0人已打赏
免费2人已点赞
分享
水处理
返回版块42.28 万条内容 · 1437 人订阅
阅读下一篇
铁碳微电解填料在工业污水处理中自身产生的的污泥量一. 称量法 范围 本标准规定了用称量法测定GL铁碳微电解填料在工业污水处理中自身产生的的污泥量。 二.原理 2.1 铁碳填料经过反应后,产生的污泥在一定温度下烘干,所得的固体残渣称为污泥总量,包括不易挥发的可溶性铁盐类、碳粉、GL催化剂等。 2.2烘干温度一般采用105℃±3℃。
回帖成功
经验值 +10
全部回复(23 )
只看楼主 我来说两句谢谢楼主分享好资料
回复 举报
CCAS(Continuous Cycle Aeration System)/CASS(Cyclic Activated Sludge System)
回复 举报