土木在线论坛 \ 道路桥梁 \ 桥梁工程 \ 桥梁设计京福高速公路大蒲高架桥主桥设计简介

桥梁设计京福高速公路大蒲高架桥主桥设计简介

发布于:2015-09-25 10:11:25 来自:道路桥梁/桥梁工程 [复制转发]
1443152099.jpg





摘 要 介绍京福高速公路大蒲高架桥主桥三跨等截面连续箱梁的设计特点。
关键词 等截面连续箱梁 结构设计 单支承
1 概述
大蒲高架桥位于闽侯境内,是北京至福州国道主干线福州境内的一座大桥,桥梁全长2015.1m,主桥斜跨国道316(交角为34.4°)。本桥东岸受软土路基控制,西岸接南屿互通立交主线桥。大蒲高架桥布孔方案左幅为:(1孔20m预应力砼简支T梁)+(23+35+23m预应力砼等截面连续箱梁)+(1×20m预应力砼简支T梁)+(3联5×30m预应力砼连续T梁)+(8联6×30m预应力砼连续T梁)。右幅为:(2×20m预应力砼简支T梁)+(23+35+23m预应力砼等截面连续箱梁)+(3联5×30m预应力砼连续T梁)+(8联6×30m预应力砼连续T梁)。桥位平面图及主桥立面布置分别见图1和图2。
本桥的突出特点:主桥上部为等截面连续箱梁,下部为独柱墩,这是我省高速公路上首座此类型的桥梁。图1 桥位平面图 见附件
2 设计技术标准
(1)计算行车速度:80km/h;
(2)设计荷载:汽超20-级,挂-120;
(3)桥面净宽:净11+2×0.5m;
(4)设计水位:8.3m(百年一遇);
(5)地震基本烈度:7度,按8度设防;
(6)气候:年平均气温19.6°C,年平均降水1343.8mm,年平均风速2.8m/s,年平均相对湿度77%。
图2 主桥立面图 见附件
3 主桥上部构造
本桥主桥为(23+35+25)m三跨等截面连续箱梁,箱梁高2m,断面为单箱双室,两翼悬臂长2.5m,底宽7m。在边跨跨中和中跨跨中均设置一道实体厚30cm的中隔板,在各跨支承处均设置一道实体厚100cm或120cm的端隔板。主桥中支承为单点单支承,边支承为双点支承。箱梁纵向布置预应力钢绞线。
根据箱梁结构受力特点及布置预应力钢绞线的要求,拟定结构尺寸如下:
⑴顶板:在端隔板至跨中方向4m范围内顶板厚度由45cm过渡到20cm;中隔板两侧20cm范围内顶板厚度由30cm过渡到20cm。
⑵底板:在端隔板至跨中方向4m范围内底板厚度由40cm过渡到20cm;中隔板两侧20cm范围内底板厚度由30cm过渡到20cm。
⑶肋板:肋板承受截面剪应力及主拉应力,并承受局部荷载产生的横向弯矩,其厚度还必须满足布置预应力钢筋及浇筑混凝土的要求。因本桥箱梁断面为单箱双室,所以有3个肋板,在端隔板至跨中方向4m范围内边肋板厚度由70cm过渡到35cm,中肋板厚度由90cm过渡到35cm;中隔板两侧20cm范围的内边肋板厚度由55cm过渡到35cm,中肋板厚度由75cm过渡到35cm。
⑷梗腋:顶板与肋板交接处设80×25cm的上梗腋,以减少崎变应力,减少桥面板跨中弯矩,避免应力集中。底板与肋板交接处设25×25cm的下梗腋。
4 主桥下部构造
由于本桥是斜跨316国道的高架桥,因此主墩采用圆形独柱墩,具有整体外形简洁美观,桥下通视好的优点。为布置支座需要,主墩顶1.4m范围内直径由1.9m过渡到1.6m,并采用40#混凝土,其余部分为30#混凝土,主墩支座采用KPZ抗震盆式橡胶支座,主墩构造见图3。连接墩为圆形双柱轻型墩,墩径为1.5m,连接墩构造见图3。基础均为钻孔灌注桩。
图3 桥墩构造图 见附件
5 上部结构计算
采用同济大学"桥梁博士2.8版直线梁桥平面杆系有限元程序"进行主桥上部结构内力分析及配索,截面尺寸详见图4典型断面图。整个上部结构共划分为185个节点,328个单元,其中纵梁根数有5根,总计180个单元。纵梁单元编号如下:
①号纵梁 单元编号 1~36
②号纵梁 单元编号 37~72
③号纵梁 单元编号 37~108
④号纵梁 单元编号 109-144
⑤号纵梁 单元编号 145~180
计算工况考虑
本桥等截面连续箱梁结构采用搭梁式支架一次现浇。因此计算划分为2个施工阶 段和1个运营阶段。图4典型横断面图 见附件
(1)施工阶段。
① 搭架现浇3跨连续箱梁,经过正常混凝土养护龄期后张拉预应力钢索。
② 卸支架,施工二期恒载。
(2)运营阶段。
按距施工完毕500d和1000d分别计算计入活载的组合效应。
5.2 预应力体系
主桥采用OVM-12张拉锚固体系,钢绞线采用ASTM A416-90a标准,高强度低松弛270k级φj15.24钢绞线,其标准强度为1860MPa,,公称直径15.25mm,公称面积140mm2。预应力波纹管采用镀锌双波金属波纹管。
有关预应力计算参数:预应力钢索锚下张拉控制应力为1395MPa(未考虑锚具锚口摩阻损失),张拉控制力2343.6kN,采用一次张拉,松弛系数为0.07,预应力管道摩擦系数μ=0.25,管道偏差系数K=0.0015,锚具变形和钢束回缩量为6mm,
1443152118.jpg

5.3 温度场
超静定结构中,温度应力可以达到甚至超过活载应力,已被认为是预应力混凝土桥梁产生裂缝的主要原因。温度应力达到一定数值,有可能增加箱梁腹板的主拉应力,恶化斜截面的抗裂性。所以选用符合实际情况的温度梯度曲线十分重要。根据桥址区的气象条件并参考有关文献及相似工程,本桥采用的温度场为:
⑴均匀温差:升温取25℃,降温取-20℃。
⑵不均匀温差:升温模式取新西兰升温温差模式,降温模式取英国降温温差模式(BS5400),如图5所示。图中H为梁高。图5不均匀温差模式 见附件
5.4 沉降计算
(1) 边墩沉降取1cm。
(2) 中墩沉降取1cm。
两种工况取不利值。
5.5 计算组合
组合一:结构重力+预应力+汽车+支沉①(或支沉②);
组合二:结构重力+预应力+汽车+支沉
①(或支沉②)+升温模式(或降温模式);
组合三:结构重力+预应力+挂车。
5.6 计算结果
根据以上所述的计算方法及考虑计算参数、工况等,进行预应力配索设计计算(23m+35m+23m)等截面连续箱梁上部结构在主要组合(组合一)为全预应力构件,在附加组合(组合二)为部分预应力A类构件。运营阶段结构应力见表1。箱梁需设置8mm预拱度。
表1运营阶段结构应力 见附件
6 横向计算
由于箱梁的肋距较大,箱壁相对较薄,所以箱梁的横向内力计算是十分重要的。本桥的横向计算仍采用采用"桥梁博士2.8版直线梁桥平面杆系有限元程序"。计算方法为框架分析法,其原理是:在箱梁的长度方向上截取单位长度的薄片框架,利用结构力学方法进行分析,但必须满足框架的变形与整个梁体协调一致的原则。
本桥为等截面箱梁,计算步骤为:取1m长的跨中箱梁梁段(见图4中"跨中典型断面"),视为平面框架,先对此框架加支承,进行框架分析,然后释放支承,进行结构分析,最后将两者内力叠加,即为箱梁的横向内力。根据此内力进行横向配筋。
7 下部结构计算
下部结构计算除考虑常规影响因素外,还考虑了在地震基本烈度为Ⅶ度情况下土层震陷影响。墩柱和桩基础按极限状态法及裂缝控制进行配筋和验算。
1443152135.jpg

8 结语
(1) 箱形截面具有强大抗扭性能,所以在中支承为单点支承及偏心荷载作用下,结构在施工与使用过程具有良好的稳定性。
(2) 箱梁顶底板都具有较大的混凝土面积,能有效地抵抗正负弯矩,适应连续梁等具有正负弯矩的结构。
(3) 城市高架桥中,上部采用箱形截面,下部采用独柱墩,具有桥梁外形简洁美观,桥下通视好的优点,应用广泛。

1443152099.jpg


1443152118.jpg


1443152135.jpg

全部回复(2 )

只看楼主 我来说两句抢地板
  • lw010
    lw010 沙发
    谢谢楼主,好资料,学习了
    2015-11-16 07:50:16

    回复 举报
    赞同0
  • woshic2y
    woshic2y 板凳
    有没有桥墩的图纸可以分享一下,我需要一个高墩的图纸。
    2015-11-09 16:15:09

    回复 举报
    赞同0
这个家伙什么也没有留下。。。

桥梁工程

返回版块

19.41 万条内容 · 624 人订阅

猜你喜欢

阅读下一篇

桥梁设计试论桥梁伸缩缝问题原因分析及改进方法

1 影响伸缩量的基本因素  1.1 温度变化   温度变化是影响伸缩量的主要因素。由于我国幅员广大,温差悬殊、变差幅度各地不一,兹推荐下列数据供设计参考使用。由于温度使桥梁内部温度分布不均匀会引起大跨径桥梁端部产生角变位,一般跨径比值较小,可不予考虑;大跨径桥梁,设计时应予考虑  1.2 混凝土的徐变和收缩   钢筋混凝土桥及预应力混凝土桥需考虑其徐变及收缩。徐变量按梁在预应力作用下的弹性变形乘以徐变系数?=2求得。收缩量以温度下降20℃来换算。应当考虑安装时混凝土的徐变和收缩已完成的部分,为此应将全部徐变和收缩量乘以折减系数?。下列?值供设计时参考。

回帖成功

经验值 +10