土木在线论坛 \ 道路桥梁 \ 道路工程 \ 向家坝地下厂房进水口边坡稳定性分析及边坡加固措施

向家坝地下厂房进水口边坡稳定性分析及边坡加固措施

发布于:2015-07-09 11:05:09 来自:道路桥梁/道路工程 [复制转发]
一、前言

  边坡稳定与否在土木工程中是一个非常重要的问题。在开挖的过程中,由于边坡结构的改变而使其应力状态发生变化,常常会导致边坡失稳。因此预先做好边坡的稳定性分析,并提出有针对性的工程处理措施,是工程顺利进行的保证。本文以向家坝地下厂房进水口边坡为例,通过三维非线性有限元计算分析,对进水口边坡的整体稳定进行安全评价,并提出边坡加固的工程处理措施。

  二、边坡开挖方式和分析方法

  向家坝地下厂房进水口边坡开挖方式为分层开挖、逐层开挖逐层加固。

  计算方法为波前法求解的有限元方法。单元编号时先对非开挖单元进行编号,然后是后开挖的单元,最后才是最先开挖的单元。这样就保证了在分析每步开挖后的岩体结构时,剩下单元和结点的编号仍然是连续的,且和初始单元和结点编号一致。

  三、计算工况及荷载组合

  本次研究分别对施工期、运行期等多种工况进行计算。计算荷载包括:水荷载(包括地下水和水库蓄水)、岩体自重、地震荷载、岩锚荷载以及地应力作用等,用A1-A6表示。

  2.工况2

  在开挖完毕后,下闸蓄水至380.0m高程时,水荷载作用在进水口边坡岩体上产生的变形和应力分布如下所述:

  (1)位移计算成果

  进水口边坡底板的最大位移为17.318mm,比施工开挖时减少2.76mm.进水口边坡坡面上位移的变化量要小于底板,最大仅在1mm左右。边坡上的最大位移值为9.15mm.

  (2)应力计算成果

  边坡坡面上岩体的应力变化较小,坡脚的应力变化也只有0.5MPa左右。应力分布规律基本与工况1相同。

  3.工况3

  工况3是在工况2的基础上不考虑地震荷载时对进水口边坡进行计算分析,并将其计算结果与工况2进行对比分析。

  位移结果显示,在不考虑地震荷载时,边坡面上的最大位移为7.88mm,小于运行期考虑地震荷载时的最大位移9.15mm.进水口底板处的最大位移略有加大,为17.634mm,工况2下为17.318mm,是由该处位移Y方向分量与地震荷载方向相反所致。就整个进水口边坡坡面的位移变化趋势来看,位移的变化主要出现在地震荷载所加的方向上,进水口边坡坡面岩体位移表现为Y方向位移分量较考虑地震荷载时要小。

  从拉应力的分布形态来看,当运行期不考虑地震荷载时,最大拉应力依然出现在软弱夹层处,为1.26MPa左右,相比考虑地震荷载时边坡坡面岩体出现的拉应力要有所减小。计算结果表明,地震荷载对进水口边坡的安全系数有一定的不利影响,但是从数值变化来看,影响不是很大。

  4.工况4

  工况4是在开挖完毕后,下闸蓄水至380.0m高程时,计算分析渗流作用对进水口边坡岩体位移变形和应力分布的影响,并计算运行期间水位从正常蓄水位骤降至死水位时对边坡位移、稳定的影响。

  根据有限元计算成果,水位由河床常年水位上升到正常蓄水位,在渗流场作用下边坡岩体上产生的位移方向与边坡开挖产生的位移方向相反,对边坡的影响是有利的。

  而当水位从正常蓄水位骤降至死水位时,边坡岩体位移的改变值相对较大,最大值有0.8mm左右。虽然从位移上看,水位骤降对边坡的整体稳定性影响不是很大,但是由于岩体里面的水不能及时排除出,一方面使边坡岩体的容重增大,增加了岩体的下滑力;另一方面,裂隙中水流所产生的静水和动水压力对节理较发育边坡岩体的块体稳定威胁较大。

  5.工况5

  本工况为正常运行期进水口边坡稳定性分析,考虑的荷载有地应力、重力、水荷载、锚固荷载等。计算结果显示,考虑锚固和水荷载时,进水口边坡坡面上最大位移为7.42mm,较工况3的7.88mm少了0.46mm,而坡面上位移平均减少1mm左右。进水口底板回弹位移最大值为17.68mm,与工况3的17.634mm基本一致。

  从拉应力的分布形态来看,边坡坡面岩体上没有出现1.2Mpa以上的较大拉应力。由于锚固的作用,拉应力值较工况3有所减小,马道尖角处出现的拉应力集中在0.4Mpa以下,坡面上最大拉应力为1.18Mpa,依然出现在软弱夹层处。

  综上所述,进水口边坡在正常运行期内,具有良好的整体稳定性。

  六、有限元计算结果分析

  根据计算成果,对向家坝地下厂房进水口边坡的变形特点和应力分布规律作如下总结:

  (1) 在施工开挖时,进水口边坡坡面变形表现为开挖引起的卸荷回弹,但其值不大,最大位移值为9.85mm.整个进水口边坡开挖区域位移变形最大的位置在进水口底板处,其最大位移值达到20.08mm.

  (2) 进水口边坡坡面的部分区域出现拉应力,在软弱夹层处出现0.85-1.08MPa的较大拉应力,在其它部位拉应力很小甚至不出现拉应力。在软弱夹层附近出现较大拉应力的区域应及时进行加固,避免出现局部失稳。

  (3) 在向家坝进水口边坡开挖和加固过程中,没有过大的拉应力和塑性变形区。进水口边坡大多数区域处于压应力状态,仅在边坡马道局部出现较小的拉应力区,边坡开挖卸荷显著的深度为3-8米。说明向家坝进水口边坡开挖是稳定的,其开挖加固顺序是合理的。

  七、进水口边坡处理措施

  有限元法分析计算的结果表明,在考虑了边坡开挖、因施工爆破等可能造成的节理裂隙或卸荷裂隙贯通、持续暴雨或水库水位骤降等因素对边坡稳定性的影响后,边坡位移不大,其整体稳定是有保证的。但在开挖过程中,边坡局部受地质优势面、层面切割形成不利的块体组合,也可能产生局部失稳。

  根据计算分析的结果和已建工程的实践经验,进水口边坡采取了以下工程处理措施来保证边坡运行的安全:

  a) 边坡开挖时采用先进的控制爆破技术。

  b) 开挖边坡周边设置截水沟。开挖边坡高程383m以上,按照排、间距3m×3m梅花形布置带反滤层的排水孔。在T33岩层范围设置两层排水廊道。

  c) 清除边坡上部和附近的覆盖层,开挖边坡高程380m以下,设置系统锚杆Ф28@2.5 m×2.5m, L=8m,喷混凝土δ=15cm,挂钢筋网φ8@200mm;高程380m以上设置系统锚杆Ф28@2 m×2m, L=8m,喷混凝土δ=20cm,挂钢筋网φ8@250mm.

  d)右岸进水口边坡涉及有煤层开采的区域或岩体较破碎的设置区域网格梁,煤洞范围采取局部回填混凝土的措施,回填范围约10m~20m,同时布置带反滤层的排水孔,采取合理的排水和防渗措施。在T33岩层范围的各级马道设置2000KN的预应力锚索。
这个家伙什么也没有留下。。。

道路工程

返回版块

15.09 万条内容 · 670 人订阅

猜你喜欢

阅读下一篇

大跨度桥梁颤振稳定性研究方法的探讨

一、前言   浸没在气流中的任一物体,都会受到气流的作用,这种作用通常称为空气力作用。当气流绕过一般为非流线形(钝体)截面的桥梁结构时,会产生涡旋和流动的分离,形成复杂的空气作用力[1].当桥梁结构的刚度较大时,结构保持静止不动,这种空气力的作用只相当于静力作用;当桥梁结构的刚度较小时,结构振动得到激发,这时空气力不仅具有静力作用,而且具有动力作用[2].风的动力作用激发了桥梁风致振动,而振动起来的桥梁结构又反过来影响空气的流场,改变空气作用力,形成了风与结构的相互作用机制。当空气力受结构振动的影响较小时,空气作用力作为一种强迫力,引起结构的强迫振动;当空气力受结构振动的影响较大时,受振动结构反馈制约的空气作用力,主要表现为一种自激力,导致桥梁结构的自激振动。当空气的流动速度影响或改变了不同自由度运动之间的振幅及相位关系,使得桥梁结构能够在流动的气流中不断汲取能量,而该能量又大于结构阻尼所耗散的能量,这种形式的发散性自激振动称为桥梁颤振[3].桥梁颤振物理关系复杂,振动机理深奥,因而桥梁颤振稳定性研究也经历了由古典耦合颤振理论到分离流颤振机理再到三维桥梁颤振分析的发展过程。

回帖成功

经验值 +10