土木在线论坛 \ 电气工程 \ 供配电技术 \ 10~35kV系统弧光接地过电压的危害及解决办法

10~35kV系统弧光接地过电压的危害及解决办法

发布于:2015-07-02 10:58:02 来自:电气工程/供配电技术 [复制转发]
1 事故情况简介
  近几年,随着城网的迅速发展,电缆线路的比例逐年增多,导致对地电容电流剧增。由于10~35 kV系统单相接地引发的电网事故愈来愈多,由此带来的经济损失和社会影响也越来越大。
  仅就北京供电局1998年7~10月的统计发现,由于10 kV系统单相接地而引发的事故便达4起,有的造成全站停电,影响重要用户供电,有的造成主变压器损坏、开关柜烧毁和避雷器爆炸等,简要情况如下:
  (1) 1998年7月6日,北京肖庄35 kV 4号母线 34 路B相发生单相接地,故障持续 1 h后,引发301开关内附CT主绝缘击穿,开关爆炸起火,1号主变差动跳闸。 2 号主变在自投过程中经受一次出口短路冲击,由于有载调压开关重瓦斯继电器因振动动作,2 号主变也掉闸,造成全站负荷停电。
  (2) 1998年7月21日,北京北土城站10 kV 5号母线发生单相接地,在查找故障线路的操作过程中,把5 号母线单相接地故障接到了3 号母线上,引起211开关爆炸,并造成一台进口全密封110 kV、31.5 MVA主变压器因出口短路而损坏。
  (3) 1998 年9月16日,北京古城站10 kV 5号母线发生单相接地故障,仅过158 ms,222 内相间短路起火,并将柜内二次线烧毁短路,直流保险熔断,失去直流电源,保护无法启动。2 号变低压侧故障持续50 s后,10 kV 4 号母线又发生单相接地(201-4刀闸支瓶闪络),单相接地持续35 s后,造成201开关至CT引线三相短路,1号主变差动保护动作掉闸。2号主变低压侧故障持续1 min 25 s后,110 kV过流保护动作掉开112、302 开关,切除了2 号主变,全站停电。事故造成 4 面10 kV开关柜烧毁,全站停电6 h以上,并影响了重要用户的供电。
  (4) 1998年10月25日,北京西罗园站10 kV线路单相接地,引发了10 kV避雷器爆炸、开关柜损坏以及10 kV 4 号、5号母线停电事故,并出现人员伤亡。
  2 原因分析
  正常情况下,10~35 kV中性点不接地系统发生单相接地,允许运行2 h。但为什么频繁地发生单相接地迅速发展成相间事故,使事故扩大化呢? 原因之一是系统中个别设备存在绝缘薄弱点,另一个重要的原因是由于10 kV系统电容电流较大,接地电弧变得不能自熄而产生了较高倍数的弧光接地过电压,据国内外经验,弧光接地过电压倍数最大可达3.5。
  在单相接地事故中,通过弧光的电流乃是健全相对地电容电流的总和。为了减小故障总电流,往往采用消弧线圈。装设消弧线圈后,接地点残流不超过10 A,接地电弧便不能维持,会自行熄灭。据了解,上述4个事故变电站,只有一个站消弧线圈没投运,该站10 kV母线电容电流高达82 A,远远高于规程的允许值10A。其它3个站消弧线圈在投运,但由于是根据理论计算值来调整消弧线圈分头的,误差大,脱谐度不满足要求,当发生单相接地时,故障点残流仍大于10 A,接地电弧不能自熄,仍产生较高倍数的弧光接地过电压,消弧线圈没有发挥应有的作用,形同虚设。比如,有的变电站10 kV系统电容电流理论计算值为43 A,但实际测试电流却高达96A。
  3 解决办法
  3.1 装设消弧线圈
 为保证接地电弧自熄,10~35 kV中性点不接地系统电容电流超过10 A时,一律应装设消弧线圈。
  3.2 加强消弧线圈的管理工作
  消弧线圈的分头调整,不能仅仅依据理论计算值,应根据实测电容电流值来调整。否则,由于计算误差大,造成消弧线圈发挥不了应有的作用,形同虚设;更为严重的是,有可能造成消弧线圈欠补偿,形成谐振过电压,从而产生负作用。容性电流测试工作应定期开展,测试方法可采用外加电容法,简便有效,适合现场应用。
  3.3 消弧线圈技术发展较快,需认真对待选型
  老式手动消弧线圈除需停电调分头,不能自动跟踪补偿电网电容电流等缺点外,脱谐度也很难保证在10%以内,其运行效果不能令人满意。据国内外资料统计分析表明,采用老式手动消弧线圈补偿的电网,单相接地发展成相间短路的事故率在20%~40%之间,比采用自动跟踪补偿的电网高出3倍以上。因此,新上消弧线圈应装设自动跟踪补偿的消弧线圈。
  目前,自动消弧线圈有四大类:(1) 用有载分接开关调节消弧线圈的分接头;(2) 调节消弧线圈的铁心气隙;(3) 直流助磁调节;(4) 可控硅调节消弧线圈。(1)、(2) 类有正式产品,其中用有载分接开关调节的消弧线圈运行台数较多,技术较为成熟,应优先选用。
  为保证老式手动消弧线圈充分发挥作用,克服固有的缺点,可分轻重缓急逐步改造成自动跟踪式。
  3.4 大力推广微机接地保护技术
  10~35 kV系统属小电流接地,由于接地保护一直未能很好解决,需要人工查找接地线路,时间长引发了一些相间短路,使事故扩大化。目前,随着技术的不断发展,国内外已实现了小电流接地系统继电保护的选择性,即当发生单相永久接地故障后,在整定的时间内可以自动跳开故障线路,无需人工进行查找切除。这一技术的采用。极大的减少了10~35 kV系统单相接地持续时间,从而大大降低了单相接地事故扩大化的概率。因此,建议重要厂站应安装接地选线装置。
  3.5 开展10~35 kV系统接地研究,制定接地方式原则。
  10~35 kV系统有消弧线圈和电阻两种接地方式,电阻接地方式又可分为高、中、低三种。目前,两种接地方式全国均有采用。消弧线圈接地方式属我国多年采用的方式,经验丰富。小电阻接地方式属新近出现的技术,它的优点是快速切除故障,过电压水平低、可以采用无间隙氧化锌避雷器等,但它的缺点也是明显的,由于发生单相接地跳闸,供电可靠性要降低,人为地增大了接地故障电流,对人身安全的威胁增加等。
  集团公司绝大多数站采用的是消弧线圈接地方式,只有极少数新投变电站采用了小电阻接地方式。
  国际上也是如此,两种接地方式均有采用,比如德国、法国、俄罗斯等国采用消弧线圈,美国、日本等国采用小电阻接地方式。值得一提的是法国最初采用小电阻接地方式,后改为消弧线圈接地方式。
  由于系统接地方式是一个系统工程,涉及面较广,比如供电可靠性、过电压保护、绝缘配合、继电保护、人身安全、通信影响等,因此,建议开展10~35 kV系统接地方式的研究。认真总结两种接地方式的运行经验和教训,从实际出发,进行技术经济分析,做到因地制宜,现实与发展相结合,制定出集团公司10~35 kV系统接地方式原则,防止出现接地方式的混乱局面和技术失误。

这个家伙什么也没有留下。。。

供配电技术

返回版块

97.89 万条内容 · 2156 人订阅

猜你喜欢

阅读下一篇

10千伏无间隙氧化锌避雷器损坏原因及预防

氧化锌避雷器是采用硅橡胶密封的。运行中由于外界温度变化大,导致密封用的硅橡胶产生龟裂、脱落、裂缝等,加之一些避雷器的端部长期受潮气、雨水等侵入,使避雷器内部绝缘遭受破坏,引发电阻片的老化失效而造成避雷器损坏。因此,要预防避雷器损坏,以降低线路遭受雷击的影响。  损坏原因  接地电阻值过大。不少农电工对接地装置的设计、施工重视不够,往往造成接地电阻值过大,不符合规程要求。避雷器的接地装置是其遭受雷击时,强大的雷电流向大地泄放的唯一通道,接地电阻值不能满足规程要求,造成雷电流不能迅速向大地泄放,促使部分雷电流向避雷器反向冲击,使避雷器遭受严重损伤,最重时还可能将配电变压器损坏。

回帖成功

经验值 +10