土木在线论坛 \ 建筑设计 \ 建筑资料库 \ 钢筋混凝土结构抗震性能分析方法

钢筋混凝土结构抗震性能分析方法

发布于:2011-03-02 13:21:02 来自:建筑设计/建筑资料库 [复制转发]
到2008年我国《建筑结构抗震规范》(GBJ11-89)实施近20年,新抗震规范(GB50011-2001)实施也有7年时间,我国四川汶川大地震,造成了巨大的人员伤亡、房屋倒塌和经济损失,这些房子大部分是89规范实施后建造的,发生这么大规模的倒塌需要我们对现行抗震设计理论、抗震设计方法和结构构造措施等进行反思,对其进行深入研究,以保证这些结构适用性的前提下,加强强震作用下的结构安全性和可靠性。为此本文基于结构的能量反应研究了结构抗震性能分析方法,基于滞回能统计特征研究了结构动力可靠度,以及通过基于随机有限元方法对结构的体系可靠度进行分析主要研究内容如下:1推导了弹性及弹塑性单自由度体系能量反应方法以及能量谱计算方法,分析了地震动特性和结构特性对能量反应的影响规律,每类场地选取40条地震波计算了能量谱,并回归了三段式能量谱简化计算公式。2推导了简化层模型多自由体系能量反应的振型分解法和能量反应时程计算方法,研究了弹塑性体系的滞回能的层间分布规律。利用MSC.MARC建立了精细有限元模型,推导了精细有限元模型能量计算,研究了框架结构和框架剪力墙结构的能量反应规律和塑性变形能的分布规律。提出了杆系构件的塑性区长度和平面构件的塑性区面积来衡量构件塑性发展程度。3通过总结现行抗震设计方法和结构抗震性能分析方法的不足,提出了基于能量的抗震性能分析方法,该方法利用塑性变形能在结构间的分布研究结构耗能机制,利用塑性区来定位结构的破坏位置,结合材料损伤分析来衡量破坏程度,并利用了某超高层结构验证了该方法的可行性。4将多自由度体系等效为单自由度体系,利用等效线性化方法计算平稳地震动作用下结构滞变能的随机反应特征,然后基于Markov假设来求解结构的动力可靠度,虽然可以通过这种基于结构滞回能反应来计算结构动力可靠度,但是由于计算过程中存在过多的简化和等效,其精度难以保证。5随机有限元方法是结构可靠度分析的较为精确的方法,具有重要的工程意义,利用前后处理软件GID结合TCL语言及TK图形库对随机有限元软件Opensees进行了可视化处理,形成了随机有限元可靠度分析模块,并利用此软件进行精细有限元模型的可靠度和各随机变量灵敏度分析,提出了利用重要随机变量进行结构可靠度分析的方法。6设计了一系列层数的“强柱弱梁”和“强梁弱柱”两种破坏模式的框架结构模型,建立了基于纤维单元的精细随机有限元模型,模型考虑了混凝土和钢筋对结构的贡献。进行结构体系可靠度分析,“强柱弱梁”体系的可靠性要大于“强梁弱柱”体系的可靠性,提出了基于结构可靠性分析的破坏模式优选方法。
活动房
Even thought 20 years had been passed from Seimic Resistant Code for Building (GBJ11-89) and 7 years for the new version (GB50011-2001) pressed until Wenchuan earthquake in 2008. A great number of death and enjured and eccnomic losses had been coused for the collapse of building. Most of the destroyed buildings are built after 1989 and the collapse reminds us to examine the now used seismic design method and the constructions. We need to do further research on the area before the new version code press. Normally there will be several different structure schemes with different destroyed type. How to select the more reliable scheme has big value. In this dissertation some problems about structural seismic resistant analysis and reliblity based failure mode selective preference will be considered as follows:1 The calculation formula of energy response and energy spectra for elastic and plastic SDOF system had been evaluated. The influence regulation of earthquake factors and structural factors had been studied. 40 earthquake records had been chosen for each site for energy sepectra calculation and a simplified formula had been presented.2 The mode superstation meth and time history caculation of energy response for the simplified storey MDOF system had been evalued and based on that the hystecric energy destrucbution in storeys had been studied. MSC.MARC had been used to establish accurate FEM model and the energy response had been evaluated. The gross energy response and distribution of plastic deformation of reinforced concrete frame and frame-shear wall structure had been studied. The length of plastic area for one dimension members such as beams or columns and the area of plastic area for two dimension members such as shear walls and slabs had been presented for measure the extent of plastic.3 The limitation of the now used seismic resistant method and seismic performance analysis method had been summaried. According to the hysteric test of beams, columns and shear walls, the limitation of the plastic area of the members had been suggested. And joint together with the damage index of material, a new method that energy based seismic analysis method had been presented. The application on a complex tall building of this method verified its feasibility.4 To simplify the MDOF system to SDOF system and applify the equavelent linear method to calculate the scholastic response of hysteric energy response under stable earthquake excitation and then sovle the dynamic reliability basen on the Markov assumpution. Although it can be used to calculate the dynamic reliability based on the hysteric energy response, it is not a accrate way for its simplification and equivalence.5 The stochastic finite element method is valuble for its accuracy in structural system reliability analysis. Visilization programme GID is used with script language TCL and graphics library TK to develop the stochastic finite element method software Opensees. A module is added to GID is called OSReliablility to analysis structural system reliability and sensitivity of stochastic variables with accrate FEM model. A reliablility analysis method with important schositc variables had been approved.6 Two failure mode“columns stronger than beams”and“beams stronger than columns”for frame structures had been designed and the accurate schositic FEM model which consider the concrete and rebar seprately had been established by OSReiliability. By the system reliability analysis we know that the reliability of“columns stronger than beams”is lager than“beams stronger than columns”. Based on which, a method to select a better failure mode with system reliability analysis had been approved.
这个家伙什么也没有留下。。。

建筑资料库

返回版块

13.58 万条内容 · 178 人订阅

猜你喜欢

阅读下一篇

烟大铁路轮渡系统集成技术

跨海铁路轮渡是一项现代的综合运输工程,涉及铁路、港口、船舶、航运等多行业,具有规模巨大、技术复杂、工程实施难度高等特点,是专业性极强的系统工程。铁路轮渡在世界上已有150多年的历史,但由于安全、效率、环保和成本等方面要求很高,实施这种复杂巨系统仍然是极具挑战性的任务。跨海铁路轮渡在我国是一项新兴的交通运输技术,虽然有国内外工程实施经验可借鉴,但技术条件和工程环境差异很大。对于这样一个复杂巨系统,总体设计理念是系统顺利实现的基础,总体构架、接口技术、功能需求、技术措施是系统设计成败的关键。可以说,整个铁路轮渡系统的技术开发和建设就是系统集成的过程。鉴于烟大铁路轮渡工程规模大、条件复杂、技术要求高以及在自然条件上与粤海轮渡差异大等特点,为了在较短的时间内,以较小的成本高质量的实施烟大铁路轮渡系统,本研究在总结国内外铁路轮渡工程实施经验的基础上,充分吸收系统集成思想,展开铁路轮渡系统集成模式的研究,再应用所提出的集成理论与方法进行烟大铁路轮渡系统工程实施研究。本文主要包括以下几方面内容:1.系统分析了铁路轮渡系统的基本功能、集成目标与集成原则。构建了铁路轮渡系统的集成框架,包括核心子系统的划分、物理网络架构和逻辑网络架构,并分析了系统集成的关键技术与接口问题,从而提出了铁路轮渡系统集成的一种模式,即从技术集成方法与运营管理集成方法两方面详细描述了实施铁路轮渡系统这样复杂巨系统的思路。2.在对铁路轮渡系统合理性影响因素分析的基础上,建立了铁路轮渡系统集成模式合理性的指标体系,提出了一种基于模糊综合评估模型与层次分析模型的模糊性层次分析模型,便于在项目立项初期进行科学性的定量分析,辅助决策。3.应用提出的铁路轮渡系统集成模式,分析烟大铁路轮渡系统各核心子系统的特点以及集成目标,搭建系统集成框架。然后,根据烟大铁路轮渡系统的集成目标及特点,完成烟大铁路轮渡系统的技术集成和运营管理集成。4.结合烟大铁路轮渡系统集成技术,提出了铁路轮渡集成效果分析方法,分析评估了烟大铁路轮渡系统集成效果。首先,对整个系统集成进行了合理性评估。其次,对烟大铁路轮渡系统的综合能力进行分析,并提出进一步加强系统能力的措施。再次,建立烟大铁路轮渡船桥港动力分析模型,对列车通过船桥港时的行车动力性能以及下部结构的动力响应进行评价。最后,实施了烟大铁路轮渡系统的系统联调。烟大铁路轮渡系统的成功实施,说明了本研究提出的铁路轮渡系统集成模式是比较科学的,具有良好的参考价值。烟大铁路轮渡系统集成中所采用的多项新技术及方法也可为今后铁路轮渡系统设计或铁道工程相关领域设计提供参考。

回帖成功

经验值 +10