土木在线论坛 \ 建筑设计 \ 建筑资料库 \ 因子间存在高阶交互作用和约束条件的复杂过程

因子间存在高阶交互作用和约束条件的复杂过程

发布于:2011-02-25 14:18:25 来自:建筑设计/建筑资料库 [复制转发]
响应曲面法是质量改进与优化的主要工具。当影响因素与质量特性之间的关系较为复杂时,参数RSM只能在很小区域内近似的描述实际工业过程,不能拟合真实的曲面;而非参数RSM需要较大的样本量,在有限样本的情况下泛化性差,并且模型难以优化。本研究将目前关于小样本统计学习和预测的最佳机器学习理论——支持向量回归机(SVR)引入到了RSM,目的在于针对多极值、因子间存在高阶交互作用和约束条件的复杂过程,发展一种包括模型拟合、过程优化、实验设计阶段在内的RSM实现方法。方法具有泛化能力强、所需样本量小等特点。研究的主要内容及创新点包括:1.在机器学习的框架之内描述了RSM的模型拟合,将其归结为一类有限制条件、可主动获取样本点的小样本学习问题;提出一种实用性的SVR核函数及参数选择方法,在不增加样本的情况上优化了SVR的参数;提出了基于SVR的复杂过程RSM拟合方法;2.提出一种基于支持向量聚类的序列二次规划法(SQP)用于RSM的过程优化,即首先对SVR拟合所得的支持向量进行聚类,然后再以各聚类中心为起点,采用SQP并行寻优;3.提出两种基于SVR的复杂过程RSM的实验设计方法。方法一以等间距空间网格设计为基础,将可行域划分为若干子区域,根据先验知识确定各子区域内的平坦性权值并调整实验点数目;方法二基于序贯性设计思想,以大间距空间网格设计为基础,通过寻优确定极值点的大致区域,然后再拟合二阶模型获得对极值点更精确的估计;4.给出了基于SVR的复杂过程RSM的总体步骤和流程图,并进行了应用研究。对于降低吡啶二乙基硼烷合成反应综合成本的实验,给出了三种优化方案;对于减小叶片弹簧自由高度波动的实验,提出了基于SVR的双响应曲面法(DRSM),并提出了两种估计均方误差MSE的策略;理论与应用研究表明,基于SVR的RSM方法的泛化性能、对响应曲面的重现能力等均优于现有RSM,而且所需样本量最少,寻优则可以发现多个过程极值。同时,采用所提的核函数及参数选择方法得到的SVR拟合模型,其泛化误差与理论最小泛化误差的平均偏离率在20%以内;对支持向量的聚类分析,有效地降低了寻优的迭代次数;与等间距空间网格设计和经典RSM相比,所提实验设计方法的实验次数降低了约20%。说明了基于SVR的复杂过程RSM的有效性与优越性。
逆变焊机
Response Surface Methodology (RSM) is one of the main approaches for quality improvement and optimization. When the relationship between influential input factors and output quality characteristics of a process is complex, both parametric RSM and nonparametric RSM have their limitations. For parametric RSM, it can only roughly describe the real industrial process within a very narrow region, and thereby fails to fit the real surface. For nonparametric RSM, it needs relatively larger sample size, which means that the generalization performance is poor for small samples, and it leads to difficulties in process optimization as well.This dissertation introduces Support Vector Regression (SVR)--currently the best machine learning theory about small sample statistical learning and forecast-- into RSM. The purpose of the dissertation is to develop a complex process oriented, SVR-based RSM approach which includes the phases of model fitting, process optimization, and design of experiment. Here the complex process is defined as an industrial process which includes several extrema as well as high order interactions and constraints within the influential factors. The proposed approach needs relatively small sample size and have strong generalization performance as well. The main contents and contributions of the dissertation include:1. First, the model fitting phase of RSM is described as a sort of constrained small-sample learning problem which is able to actively gain sample points. Therefore further research could be carried on under the field of machine learning theory. After that, a practically selecting method for SVR kernel functions and parameters is proposed, through which the SVR parameters is optimized without additional samples. Then a method for the model fitting phase of SVR-based RSM is proposed.2. A support vector clustering based Sequential Quadratic Programming (SQP) method is proposed for the process optimization phase of SVR-based RSM. First, the support vectors which are derived from SVR fitting equation are clustered, and then several SQP courses are started concurrently from these cluster centers to achieve process optimization.3. Two methods for the experiment design phase of SVR-based RSM are proposed. Methods I runs an equal interval space filling design to gain the original experiment points at first. Then it divides the feasible region into several sub-regions. After that, the weights of flatness of each sub-region are determined according to prior knowledge about the complex process, and then, the original experiment points are adjusted according to the weights of flatness. Method II, which is based on the sequential mode, runs a large interval space filling design at first. Then it determines the rough regions of each extremum through process optimization, and then fits the second order models in the regions to gain the precise estimations of the extrema.4. The general procedures and flow charts of SVR based RSM are proposed, and then two application studies are conducted. In the study of reducing the comprehensive cost of synthesis of pyridyl diethyl borane, three optimization plans are provided. In the study of decreasing the free height variation of leaf spring, a SVR-based Dual RSM is proposed and two strategies for estimating mean squared error (MSE) are provided as well.Both theoretical analysis and applied studies indicate that the proposed SVR-based RSM approach is better than the existing RSM approaches in generalization performance and recurrence capability of response surface. Moreover, the proposed approach requires relatively smaller sample size, and is able to discover several process extrema. In addition, by using a practical selecting method for SVR kernel function and parameters, the average deviation ratio of SVR generalized error from the theoretically minimum is controlled within 20%; the number of iteration is effectively decreased by cluster analysis of support vectors, and the average experiment times of the approach decrease about 20% compared with equal interval space filling design and the classic RSM. All these demonstrate the adaptability and superiority of the approach proposed in the dissertation.
这个家伙什么也没有留下。。。

建筑资料库

返回版块

13.61 万条内容 · 209 人订阅

猜你喜欢

阅读下一篇

传统的滑坡分析方法

传统的滑坡分析方法,如极限平衡法、数值分析法、工程类比法等以及近年来兴起的计算智能分析方法虽然在滑坡研究取得了一定的成绩,也一定程度减轻了滑坡对人类带来的损失,但滑坡因为其影响因子的随机性、不确定性及滑坡滑移过程的非线性决定了其预报的极度困难,被科学界公认为尖端课题之一。因此,本论文作为“十五”重点攻关课题“库区地质灾害监测、预警及辅助决策支持系统关键技术研究与示范”(2001BA604A02)的后续研究,仍以滑坡稳定性分析及灾变预测问题为研究对象,首次将元胞自动机这种研究非线性系统的动力学模型引入到滑坡的研究中,研究了元胞自动机模拟滑坡的理论和方法,建立了CA-Landslide模型,结合地理信息系统(GIS)技术,集成了新的基于GIS的滑坡灾变预测智能集成系统,并在万州区铁峰乡滑坡上作了实例分析,完成的研究工作及取得的主要进展如下:①讨论了元胞自动机的基本原理、构成和一般特征,并重点研究了用它模拟滑坡的基本方法,以及对滑坡岩体物理力学性质和应力的模拟,在此基础上建立CA-Landslide模型。②详细研究了滑坡演化过程中的非线性规律,主要是分形规律和自组织临界特征,并研究了这些规律与滑坡演化过程之间的内部联系。③根据传统滑坡稳定性分析安全系数的思想,引入损伤当量这个新的物理量,研究损伤当量与滑坡分维数之间的关系,从而建立起CA-Landslide模型的稳定性判断依据。④在GIS基本功能、数据结构分析的基础上,研究了基于ArcView GIS 3.2的滑坡预报GIS综合信息模型的构建方法与程序,研究了建立滑坡综合信息数据库,并对建立时空数据模型做了初步的探讨。⑤详细研究了元胞自动机与GIS集成的必要性、可能性及集成方式。根据CA-Landslide模型的特点,选定集成方案,并采用ArcView的二次开发语言Avenue及Visual Basic混合编程,将CA-Landslide模型集成到“滑坡灾变智能预测系统”中。⑥以万州铁峰乡滑坡为例,探讨了GIS支持下CA-Landslide模型在三峡库区铁峰滑坡灾变预测分析中的应用,得到的结果与其它方法分析结果比较吻合。本文的研究成果进一步充实和完善了“滑坡灾变智能预测系统”,同时也为滑坡的预测研究提供了一种新的方法和思路。

回帖成功

经验值 +10