土木在线论坛 \ 注册考试 \ 注册给排水工程师 \ 物理学的发展历程< 二 >

物理学的发展历程< 二 >

发布于:2005-09-11 11:25:11 来自:注册考试/注册给排水工程师 [复制转发]
 


公元1928年

  提出强电场下金属发射带电粒子的量子力学隧道效应理论(英国 佛勒、诺德海姆)。

  发现透明物质散射的光中有频率改变的效应(印度 钱·拉曼)。

  提出符合狭义相对论要求的电子的量子论,成功地得出电子的自旋和磁矩(英国 狄拉克)。

  应用量子力学中粒子穿透位垒的隧道效应,解释原子核的 衰变现象,取得和盖革—纳托尔经验公式形式上的符合 (美籍俄国人 伽莫夫,美国 康登、格尼)。

  应用费米和狄拉克的量子统计法发展金属的自由电子理论(德国 索末菲)。

  提出韦斯铁磁性理论的量子力学解释(德国 海森堡)。

  提出决定一体系占有某量子状态几率的时间变化率的基本方程(奥地里 泡里)。

 

公元1929年

  把电磁场看作动力学体系,提出电子和电磁场相互作用的相对论性量子力学,是量子场论的先驱(德国 海森堡,奥地利 泡里)。

  提出超声波在气体中被反常吸收的理论(美籍奥地利人 赫茨菲,美国 弗·赖斯)。

  首次实现彩色电视的试验(美国 伊夫斯)。

  提出等离子体的高频率静电振荡理论,解释放电管中反常电子散射(美国 汤克斯、兰米尔)。

  发明高频直线加速器,成为后来共振型加速器的先驱(挪威 维德罗)。

  各自发明油扩散真空泵,可得千万分之一乇(千万分之一毫米汞柱)的真空(英国 伯奇,美国 希克曼)。

  提出极性分子理论,确定分子的偶极矩,对测定分子中原子间实际距离提供了可能,并可以预测分子的介电性能及电介质在交变电场中引起功率损耗的弛豫(荷兰 德拜)。

 

公元1930年

  提出未被电子占有的负能态,其行为如带正电粒子的假说,即狄拉克空穴理论(英国 狄拉克)。

  发现第二种液态氦的超流动性(荷兰 刻松、凡登安德)。

  在固体能带论中提出所谓“布里渊区”概念(法国 布里渊)。

  发明回旋加速器(美国 劳伦斯)。

  发现相差衬托方法能观察到光通过厚薄交替的透明体后的相位效应(荷兰 泽尼凯)。

 

公元1931年

  首次发现宇宙射线中存在反粒子—正电子,证实狄拉克空穴理论的预言(美国 安德森)。

  提出铁磁性的“自旋波”量子力学理论,并预言铁磁体的低温磁性质(美籍瑞士人 布洛赫)。

  提出半导体的能带模型的量子力学理论(美籍英国人 哈·威尔逊)。

  提出半导体中的“激子”概念,用以解释吸收光后可不发生光致导电的现象(苏联 弗朗克尔)。

  用统计力学论点推得不可逆过程的倒易关系,后来不可逆过程热力学的基础(美国 盎萨格)。

  发明静电加速器(美国 范德格拉夫)。

 

公元1932年

  在人工核反应中发现中子(英国 查德威克)。

  用负反馈法改善电子管放大器的频率响应性能,用以减小失真(美国 尼奎斯特、哈·布莱克)。

  提出两核子间的吸力是交换力,引入同位旋概念,强调此交换力和电荷无关(德国 海森堡)。

  发现宇宙射线中的“簇射”现象(意大利 饶希)。 。

  发现宇宙射线中有正、负电子对产生,及由它们构成的电子“簇射”(英国 布莱凯特,意大利 奥查林尼)。

  提出和电磁场相互作用的电子的相对论性量子力学(英国 狄拉克)。

  指出狄拉克量子电动力学和海森堡、泡里的量子电动力学在数学结构上等效(比利时 罗森菲)。

  发明高电压倍加器,用以加速质子,实现人工核蜕变(英国 考克拉夫特、沃尔顿)。

  利用回旋加速器使原子核发生蜕变(美国 劳伦斯、黎文斯顿、密·怀特)。

  发明驻声波光栅的衍射法,测定液体中超声的波长和速度 (荷兰 德拜,美国 西尔斯,法国 卢卡斯、毕伽)。

 

公元1933年

  实验证实原子在发射和吸收光子时,发生按爱因斯坦公式所示的动量改变(奥地利 弗里什)。

  提出中微子假说,用以维护 衰变的总能量守恒(奥地利 泡里)。

  发现超导电体有理想的抗磁作用(荷兰 迈斯纳、奥申菲)。

  提出电磁场量子化理论的互补原理解释(丹麦 尼·波尔,比利时 罗森菲)。

  实验证实正负电子相遇可转化(所谓湮没)成电磁辐射,其发生几率符合狄拉克1930年电子论公式(法国 季保德)。

 

公元1934年

  用中微子概念,提出原子核 衰变的量子理论(美籍意大利人 费米)。

  用中子轰击法制成多种人工 放射元素。发现原子核吸收慢中子与中子速率成反比的规律(美籍意大利人 费米埃·塞格勒,意大利 阿玛尔第、达戈斯蒂纳、拉萨悌,苏籍意大利人 庞悌考尔沃)。

  提出核子力的介子场论

全部回复(3 )

只看楼主 我来说两句
  • yanyan20332033
     


    经典电磁学、经典电动力学

    经典电磁学是研究宏观电磁现象和客观物体的电磁性质的学科。人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。

    19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。

    在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。

    现在人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。

    19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。

    由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦茨把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。

    事实上,发电机无非是利用电动力学的规律,将机械能转化为电磁能:电动机无非是利用电动力学的规律将电磁能转化为机械能。电报、电话、无线电、电灯也无一不是经典电磁学和经典电动力学发展的产物。经典电动力学对生产力的发展起着重要的推动作用,从而对社会产生普遍而重要的影响。

    光学和电磁波

    光学研究光的性质及其和物质的各种相互作用,光是电磁波。虽然可见光的波长范围在电磁波中只占很窄的一个波段,但是早在人们认识到光是电磁波以前,人们就对光进行了研究。

    17世纪对光的本质提出了两种假说:一种假说认为光是由许多微粒组成的;另一种假说认为光是一种波动。19世纪在实验上确定了光有波的独具的干涉现象,以后的实验证明光是电磁波。20世纪初又发现光具有粒子性,人们在深入入研究微观世界后,才认识到光具有波粒二象性。

    光可以为物质所发射、吸收、反射、折射和衍射。当所研究的物体或空间的大小远大于光波的波长时,光可以当作沿直线进行的光线来处理;但当研究深入到现象细节,其空间范围和光波波长差不多大小的时候,就必须要考虑光的波动性。而研究光和微观粒子的相互作用时,还要考虑光的粒子性。

    光学方法是研究大至天体、小至微生物以至分子、原子结构的非常有效的方法。利用光的干涉效应可以进行非常精密的测量。物质所放出来的光携带着关于物质内部结构的重要信息,例如:原子所放出来原子光谱的就和原子结构密切相关。

    近年来利用受激辐射机制所产生的激光能够达到非常大的功率,且光束的张角非常小,其电场强度甚至可以超过原子内部的电场强度。利用激光已经开辟了非线性光学等重要研究方向,激光在工业技术和医学中已经有了很多重要的应用。

    现在用人工方法产生的电磁波的波长,长的已经达几千米,短的不到一百万亿分之一厘米,覆盖了近20个数量级的波段。电磁波传播的速度大,波段又如此宽广已成为传递信息的非常有力的工具。

    在经典电磁学的建立与发展过程中,形成了电磁场的概念。在物理学其后的发展中,场成了非常基本、非常普遍的概念。在现代物理学中.场的概念已经远远超出了电磁学的范围,成为物质的一种基本的、普遍的存在形式。

    2005-09-11 11:32:11

    回复 举报
    赞同0
  • yanyan20332033
     

     

    公元1951年

      建设第一个“增殖性核反应堆”,在铀235裂变放出能量的过程中,还将铀238转变为铀235,以产生更多的核燃料(美籍加拿大人 津恩等)。

      提出解释量子力学的隐变量理论,力图维护由精确因果律决定的连续运动描述(巴西 玻姆)。

      从分析彗星尾的运动和电离性质,发现太阳经常射出氢等离子体,即所谓“太阳风”(德国 比尔曼)。

      首次实现晶体中核自旋体系的所谓负绝对温度(美国珀塞尔、庞德)。

     

    公元1952年

      发明过热液体(氢)的汽泡室装置,比云雾室更灵敏地记录高能带电粒子的径迹(美国 格拉塞)。

      提出原子核结构的集体模型理论(丹麦 阿·波尔)。

      提出快速带电粒子在梯度交变磁场中的强聚焦原理,使建造特大加速器(能量十亿电子伏以上)提供了依据(美国黎文斯顿、斯奈德、伊·柯朗)。

      发明氢弹,实现轻元素的热核爆炸(美国 由特勒等负责)。

     

    公元1953年

      首次利用高能电子研究原子核内部电磁分布,发现质子有大小和电磁结构(美国 霍夫施塔特)。

      实现氢弹的爆炸(苏联 萨哈罗夫、塔姆等)。

      分别提出在强作用下守恒的奇异量子数概念,用以归纳奇异粒子间关系(美国 盖尔曼,日本 西岛)。

     

    公元1954年

      利用氨气分子来制成微波激射器(即“脉塞”),实现用受激发射产生放大的、频率单纯的微波,是“量子电子学”的先驱 (美国 汤斯、高尔登、柴格尔)。

      提出超导电性的经验规则,发现数百种超导物质,为产生特强磁场提供原材料(美籍德国人 马蒂阿斯)。

      提出自然规律必须符合物质、空间、时间三种宇称联合守恒定律。(德国 吕德斯)。

      建成第一个核电站(苏联 负责者布洛欣采夫等)。

     

    公元1955年

      提出磁流体湍流理论,是海森堡理论的推广(美籍印度人 钱锥赛克哈)。

      利用高能加速器发现反质子(美籍意大利人 埃·塞格里,美国 钱伯林)。

      提出强作用“基本粒子”结构的模型,认为所有强作用粒于都由质子,中子、 超子及其反粒子所组成(日本 坂田昌一)。

      对1951—1953年期间反对哥本哈根学派量子论解释的各种意见进行反驳(德国 海森堡)。

      提出原子核大变形的壳层模型理论(瑞典 斯·尼尔森)。

     

    公元1956年

      首次观测到中微子存在的可靠证据(美国 莱恩斯、科恩)。

      提出弱相互作用下宇称不守恒(美籍华人 李政道、杨振宁)。

      发现正、反质子对的电荷交换反应,从而证实反中于的存在,(美国 考尔克、温策尔,意大利 皮奇昂尼等)。

      利用延迟符合计数光子的办法,首次观测到两个相干光束中光子间的起伏关联性(英国 儿·布朗、特威斯)。

      成功产生并分析非稳定的自由基分子的光谱(加拿大籍德国人 赫茨伯格)。

     

    公元1957年

      中国科学院,第一机械工业部有关单位制成锗半导体电子学器件,是中国电子技术晶体管化的开端。

      苏联发射第一颗人造地球卫星,重83.6公斤,倾角65度。

      观测到弱相互作用下的空间宇称不守恒(美籍中国人吴健雄,美国 安布勒、海沃德、霍普斯,美籍英国人 哈德森)。

      提出强磁场在超导电体中渗透通量丝理论,预言第二型超导电体(苏联 阿布里考索夫)。

      开始发展“几何动力学”,把万有引力、电磁场、质量、电荷都当作弯曲的空虚空间的性质来解说,企图把物理学完全几何化(美国 惠勒、米斯纳)。

      提出超导电性的量子力学微观理论(美国 巴丁、施里佛、库波)。

      在空间和物质两种宇称不分别守恒基础上,分别提出中微子二分量理论,得出中微子左旋,反中微子右旋的结论(美籍华人 李政道、杨振宁,以色列 萨拉姆,苏联 列·兰道)。

      发现弱作用下物质宇称(正反对称性)也不守恒(英国 卡利根)。

      提出费米液体的量子理论(苏联 列·兰道)。

     

    公元1958年

      提出利用受激发射产生特强光束的单色光放大器(即“激光”)设计原理,引致六十年代激光技术的发展(美国 肖楼、汤斯)。

      实现 射线的无反冲共振吸收,为探测微小频差提供可能(德国 穆斯保尔)。

      1958—1960年,发射地球卫星和月球探头,发现环绕地球有内外两个辐射带(美国 范阿兰)。

      在第二次和平利用原子能国际会议上,公开讨论人工控制热核反应问题和超高温氢等离子体研究的结果,促进了等离子体物理学的发展(日内瓦,联合国)。

      提出弱相互作用的普适矢量—轴矢量费米相互作用及矢量流守恒理论,后被证实(美国 费恩曼、盖尔
    2005-09-11 11:29:11

    回复 举报
    赞同0
加载更多

注册给排水工程师

返回版块

42.93 万条内容 · 744 人订阅

猜你喜欢

阅读下一篇

物理学发展历程

 公元前~公元元年  公元前650~前550年,古希腊人发现摩擦琥珀可使之吸引轻物体;发现磁石吸铁。  公元前480~前380年间战国时期,《墨经》中记有通过对平面镜、凹面镜和凸面镜的实验研究,发现物像位置和大小与镜面曲率之间的经验关系(中国 墨子和墨子学派)。  公元前480~前380年间战国时期,《墨经》中记载了杠杆平衡的现象(中国 墨子学派)。  公元前480~前380年间战国时期,研究筑城防御之术,发明云梯(中国 墨子学派)。

回帖成功

经验值 +10