石油化工属于高危企业,如果我们不能及时的发现设备腐蚀,后果便是一场场事故,特别是各种高危介质的载体——储罐,一旦发生事故,便是一场灾难。那么,储罐的腐蚀一般发生在哪些部位呢?
管壁:包括外壁和内壁。外壁:储罐外壁接触大气,石化企业的环境工业大气中含有二氧化硫、硫化氢、二氧化氮等有害气体,由于吸附作用、冷凝作用或下雨等原因,空气中的水汽或雨水在储罐外壁形成水膜,这种水中可能溶有酸、碱、盐类和其他杂质,会起到电解液的作用,使金属表面发生电化学腐蚀。因电解液层比较薄,所以外壁电化学腐蚀比较轻微,而且腐蚀也比较均匀。但在罐顶凹陷处、焊缝凹陷处、保温层易进水的地方、抗风圈与罐壁连接处以及其他易积水的地方,会形成较为严重的局部腐蚀。
内壁:内壁有两个重点腐蚀部位,分别是底部焊缝向上0-300mm的范围内的罐壁以及介质液位波动处(即油气交界面附近)。
一段板0-300mm处:在介质中杂质的水分长时间沉积,在灌内形成积水,由于排水管的中心线一般比罐壁高约300mm,所以罐底始终有200mm-300mm的水存在,沉积水中含大量的氯化物、硫化物、氧、酸类物质等,形成较强的电解质溶液,产生电化学腐蚀,造成储罐内壁根部较严重的局部腐蚀。
罐壁液位波动处:由于介质内和介质上部气象空间中的含氧量不同,可形成氧浓差电池而造成腐蚀。还可因液位处干湿状况频繁交替导致沉淀物的积聚而形成垢下腐蚀。在储罐进出料过程中,液位的变化及搅动作用,更加速了这两种腐蚀。
罐底板腐蚀:介质侧与外部基础接触侧
底板介质侧:
一般腐蚀的会比壁板更加严重,有时甚至会腐蚀穿孔而出现泄漏现象。这些腐蚀主要源于灌内的沉积水,沉积水中的硫化物、氯化物、氧等物质会与金属发生反应,造成的电化学腐蚀。
另外,在物料的注入部位,由于流体的冲刷,可能形成局部的冲蚀。立柱在灌装、提取、液流运动等正常状态下,都可能与底板发生摩擦和振动,这种机械磨损配合缝隙腐蚀,可导致立柱下底板的腐蚀穿孔。
外部基础接触侧:
储罐底板的土壤侧的储罐底板的腐蚀比介质侧更加严重。边缘板是容易受腐蚀的部位,储罐基础如果没有有效的防渗水措施或防渗水材料老化失效,则雨水和水汽容易沿罐底板与罐基础的缝隙侵入到罐底的周边部位,进行腐蚀。
由于储罐沉陷的不均匀,底板会高低起伏或有踏空现象。罐底板与基础的接触不良会导致罐底土壤的充气不均而形成氧浓差电池,造成罐底板的腐蚀。由毛细现象引起的水分侵入和由于水的存在而造成的微生物腐蚀。
储罐内、外部腐蚀机理总结
内部腐蚀:
外部腐蚀:
储罐腐蚀检测:
定期检查与实时监测是比较常用的方法。
宏观检测包括:
· 储罐本体的变形、泄漏、板材的减薄。
· 连接焊缝的裂纹、气孔。
· 浮盘、密封、升降导向系统的完好性。
· 防腐层保温层退化。
· 呼吸阀、盘梯、抗风圈等附件。
· 加热器、搅拌器等内部设施。
· 基础缺陷超声波检测:
超声波厚度检测是罐体整体腐蚀的常用检测方法,应对壁板和顶板壁厚进行测定,可按下列三种情况布点:
按排板的每块板布点
按每块板的局部腐蚀深度布点
按点蚀布点
声发射检测:
可提供材料何时、何处、严重程度信息,进行失效破坏的提前预报。
缺陷的动态信息,可由此来评价缺陷的实际危害程度,以及结构的整体性和预期使用寿命。可提供随载荷、时间、温度等工况的瞬态或连续信息,因此适用于过程监控,以及早期或临近破坏的预报。
值得注意的是,这种方法检测可以保最少拆除储罐的保温层。为安装探头只需在保温层上开一个小孔,而不需要拆掉保温层来发现保温层下的容器腐蚀等问题。
高温现场使用波导杆可永久焊在容器表面,只需要在保温层开一个2cm直径的孔,探头安装在保温层外部。在非常大的低温铸罐上的探头为日常检测永久地安装在保温层下,并将电缆联接到一个操制盘上。
储罐的漏磁检测:
铁磁性材料在磁化后内部产生很强的磁感应强度,磁力线密度增大几百倍到几千倍,如果材料中存在不连续(主要包括缺陷造成的不连续性和结构、形状、材质等原因造成的不连续性),磁力线会发生畸变,部分磁力线就有可能溢出材料表面,从空间穿过,形成漏磁场,漏磁场的局部磁极能够吸引铁磁物质。
热成像仪监测:
采用定点热成像仪进行监测,可清晰观察多罐液位。
申明:内容来自用户上传,著作权归原作者所有,如涉及侵权问题,请点击此处联系,我们将及时处理!
0人已收藏
0人已打赏
免费1人已点赞
分享
环保厂商和产品
返回版块2016 条内容 · 57 人订阅
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳资料对石油贮罐的安全性进行了分析论述,对于安全生产管理和应急管理有很好的参考作用。
回复 举报