[1] 常蕊,朱蓉,赵大军. 登陆台风影响下离地300 m高度内的强风特征[J]. 大气科学. 2022, 46(5): 1071-1086.
[2] 郭健,钟陈杰,王仁贵,等. 跨海桥梁受台风影响的风速概率模型分析[J]. 工程力学. 2022, 39(S1): 180-186.
[3] 钟茜,魏凯,沈忠辉,等. 台风“玛莉亚”风场WRF模拟及最大风速半径的非对称特性[J]. 工程力学. 2022, 39(S1): 389-396.
[4] 郝键铭,冯宇,苏权科,等. 台风非平稳特性分析及全桥风场模拟[J]. 长安大学学报(自然科学版). 2022, 42(06): 66-76.
[5] Yang Y, Dong L, Li J, et al. A refined model of a typhoon near-surface wind field based on CFD[J]. Natural Hazards. 2022, 114(1): 389-404.
[6] Huang Z, Xu Y, Xia Y. Conditional simulation of 3D nonstationary wind field for sea-crossing bridges[J]. Advances in Structural Engineering. 2022, 25(12): 2508-2526.
[7] Gong Y, Dong S, Wang Z. Development of a coupled genetic algorithm and empirical typhoon wind model and its application[J]. Ocean Engineering. 2022, 248: 110723.
[8] Xiong J, Yu F, Fu C, et al. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations[J]. Applied Ocean Research. 2022, 118: 103000.
[9] 罗佳敏,姜云鹏,庞亮,等. 基于参数化风场的浙江沿海风暴潮数值模拟[J]. 海洋学报(中文版). 2022, 44(10): 20-34.
[10] 于英霞,张秀姬,宋怀辉. 基于二维浅水方程和SWAN模型的风暴潮模拟研究[J]. 河南科技大学学报(自然科学版). 2022, 43(6): 67-73.
[11] 李心雨,杨昀,李自如,等. WRF大气模式与台风经验模型在超强台风“山竹”过程重构中的比较分析[J]. 海洋工程. 2022, 40(04): 53-64.
[12] 任成才,沈瑞杰,屠泽杰,等. 飓风“桑迪”登陆期间纽约长岛附近海域风暴潮数值模拟[J]. 山东科技大学学报(自然科学版). 2022, 41(02): 13-20.
[13] Zhang M, Zhou C, Zhang J, et al. Numerical Simulation and Analysis of Storm Surges Under Different Extreme Weather Event and Typhoon Experiments in the South Yellow Sea[J]. Journal of Ocean University of China. 2022, 21(1): 1-14.
[14] Li Z, Li S, Hou Y, et al. Typhoon-induced wind waves in the northern East China Sea during two typhoon events: the impact of wind field and wave-current interaction[J]. Journal of Oceanology and Limnology. 2022, 40(3): 934-949.
[15] 崔圣爱,郭晨,张猛,等. 考虑风浪相关性的列车桥梁耦合振动分析[J]. 东南大学学报(自然科学版). 2022, 52(4): 684-689.
[16] 尚黛梦,魏凯,钟茜,等. 台风浪-潮-流相关性对桥梁群桩基础波流力的影响[J]. 工程力学. 2022, 39(z1): 187-194.
[17] 魏凯,徐洪权,钟茜. 台风下杭州湾跨海铁路大桥嘉甬通道海域风浪流特性分析[J]. 铁道标准设计. 2022: 1-6.
[18] 魏凯,钟茜,沈忠辉. 台风登陆期间跨海大桥风-浪-流作用结构振动分析[J]. 铁道标准设计. 2022: 1-10.
[19] 王凯,万远琛,刘天辉,等. 广东海域风电场风浪联合分布研究[J]. 中国造船. 2022, 63(06): 273-284.
[20] Ma Y, Wu Y, Shao Z, et al. Impacts of sea level rise and typhoon intensity on storm surges and waves around the coastal area of Qingdao[J]. Ocean Engineering. 2022, 249: 110953.
[21] Song Y, Chen J, S?rensen J D, et al. Multi-parameter full probabilistic modeling of long-term joint wind-wave actions using multi-source data and applications to fatigue analysis of floating offshore wind turbines[J]. Ocean Engineering. 2022, 247: 110676.
[22] 孙弦,王静,夏冬,等. 珠海市沿海码头风暴增水及最高潮位情景预测[J]. 广东气象. 2022, 44(06): 6-10.
[23] 熊杰,傅赐福,于福江,等. 基于ECMWF细网格风场的台风“烟花”与飓风“艾达”风暴潮数值预报检验与分析[J]. 海洋预报. 2022, 39(03): 1-9.
[24] Du H, Yu P, Zhu L, et al. Assessing the performances of parametric wind models in predicting storm surges in the Pearl River Estuary[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2023, 232: 105265.
[25] Tsai Y, Wu T, Yen E, et al. Parallel-Computing Two-Way Grid-Nested Storm Surge Model with a Moving Boundary Scheme and Case Study of the 2013 Super Typhoon Haiyan[J]. Water. 2022, 14(4): 547.
[26] Inagaki N, Shibayama T, Takabatake T, et al. Increase in overtopping rate caused by local gust-winds during the passage of a typhoon[J]. Coastal engineering journal. 2022, 64(1): 116-134.
[27] 周寅杰,刘强,张晓琪. 基于TSA-BP模型的温州站台风风暴潮增水预测[J]. 海洋环境科学. 2022, 41(5): 807-812.
[28] 刘媛媛,刘业森,张丽,等. 基于神经网络模型对风暴潮特征分析及预测——以深圳赤湾站和南澳站为例[J]. 中国防汛抗旱. 2022, 32(07): 66-71.
[29] 苗庆生,徐珊珊,杨锦坤,等. 长短期记忆神经网络在厦门风暴潮预报中的应用[J]. 中国海洋大学学报(自然科学版). 2022, 52(9): 10-19.
[30] Chao W, Young C. Accurate Storm Surge Prediction with a Parametric Cyclone and Neural Network Hybrid Model[J]. Water. 2022, 14(1): 96.
[31] 任贺贺,柯世堂,杨杰. 基于空间特性的台风风灾害评估[J]. 工程力学. 2022, 39(12): 212-221.
[32] 孙海,嵇文捷,郑雅芝. 基于栅格与云模型的风暴潮洪水风险模拟评估方法——以珠海市香洲区为例[J]. 自然灾害学报. 2022, 31(01): 69-80.
[33] 丁玉蓉,王世彬,刘仕潮,等. 黄骅市沿海风暴潮灾害风险评估区划研究[J]. 海洋预报. 2022, 39(4): 9-15.
[34] 孙丰霖. 基于证据理论的风暴潮灾害损失评估[J]. 热带海洋学报. 2022, 41(1): 75-81.
[35] Zhang S M, Zhang J, Li X M, et al. Quantitative risk assessment of typhoon storm surge for multi-risk sources[J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT. 2023, 327.
[36] 程永舟,程海洋,王晓光,等. 波流共同作用下反斜桩局部冲刷特性试验研究[J]. 水科学进展. 2022, 33(2): 306-315.
[37] 王晓光,程永舟,罗巍,等. 水流作用下斜桩局部冲刷及流场变化试验研究[J]. 中国海洋大学学报(自然科学版). 2022, 52(3): 131-138.
[38] 张玉良,潘新颖,于松宁,等. 不同倾角的侧向倾斜桩基础冲刷数值模拟研究[J]. 泥沙研究. 2022, 47(06): 23-28.
[39] Nimbalkar P, Rathod P, Manekar V, et al. Scour model for circular compound bridge pier[J]. Water Supply. 2022, 22(5): 5111-5125.
[40] Das V K, Chaudhuri S, Barman K, et al. Pier scours in fine-grained non-cohesive sediment and downstream siltation, an experimental approach[J]. Physical geography. 2022, 43(3): 365-382.
[41] Keshavarz A, Vaghefi M, Ahmadi G. Effect of the Shape and Position of the Bridge Pier on the Bed Changes in the Sharp 180-Degree Bend[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2022, 46(3): 2449-2467.
[42] 李舜,孙丽荣,渠庚,等. 复合墩台局部冲刷试验研究[J]. 人民长江. 2022, 53(8): 210-215.
[43] Mamoon A, Zhao M, Wu H, et al. Experimental investigation of local scour around two submerged short square piles under tandem, side-by-side and staggered arrangements in steady current[J]. Ocean Engineering. 2022, 261: 112156.
[44] 刘诗航,娄晓帆,唐国强,等. 孔隙率对环形阵列圆柱结构局部冲刷的影响[J]. 上海交通大学学报. 2022, 56(5): 664-674.
[45] Jan R, Lone M A. Effect of mutual interference of piers on their local scour phenomenon[J]. Innovative Infrastructure Solutions. 2022, 7(2).
[46] Athar M, Azam S, Athar H. Effect of Mutual Interference of Bridge Piers on Scouring in Meandering Channel[J]. Hydro Science & Marine Engineering. 2022, 4(2).
[47] Wei K, Qiu F, Qin S. Experimental and numerical investigation into effect of skirted caisson on local scour around the large-scale bridge foundation[J]. Ocean Engineering. 2022, 250: 111052.
[48] 高祥宇,周伟,李书亮,等. 港珠澳大桥青州航道桥桥墩基础冲刷试验研究[J]. 海洋工程. 2022, 40(4): 26-33, 43.
[49] Du S, Wu G, Liang B, et al. Scour at a Submerged Square Pile in Various Flow Depths under Steady Flow[J]. Water. 2022, 14(13): 2034.
[50] Soltani-Kazemi Z, Ghomeshi M, Bahrami Yarahmadi M. Experimental study of local scour around diamond bridge piers subject to transverse standing waves[J]. Ain Shams Engineering Journal. 2022, 13(3): 101598.
[51] de la Torre O, Hann M, Miles J, et al. Effect of the Current-Wave Angle on the Local Scour Around Circular Piles[J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING. 2022, 148(1).
[52] 娄晓帆,许晓春. 直立桩柱局部冲刷物理模型试验中的雷诺数影响研究[J]. 水利水电技术(中英文). 2022, 53(8): 121-129.
[53] Chen S G, Gong E Y, Zhao X, et al. Large-scale experimental study on scour around offshore wind monopiles under irregular waves[J]. WATER SCIENCE AND ENGINEERING. 2022, 15(1): 40-46.
[54] Roux S, Link O, Riviere N, et al. Live-bed pier scour in supercritical open-channel flows[J]. Journal of Hydraulic Research. 2022, 60(4): 675-685.
[55] 刘珊,刘浩晨. 单向流作用下黏土中单桩基础冲刷试验研究[J]. 水利水电技术(中英文). 2022, 53(1): 91-103.
[56] 刘强,刘波. 文莱大摩拉岛跨海大桥基础冲刷研究[J]. 世界桥梁. 2022, 50(5): 81-86.
[57] Okhravi S, Gohari S, Alemi M, et al. Effects of bed-material gradation on clear water scour at single and group of piles[J]. Journal of Hydrology and Hydromechanics. 2022, 70(1): 114-127.
[58] 高虎,王秋生. 河床中值粒径对桥墩冲刷坑演化过程的影响[J]. 长江科学院院报. 2022, 39(5): 15-21.
[59] 张其一,刘道发,何城宽. 波流耦合下桩周珊瑚砂冲刷机理研究[J]. 海洋通报. 2022, 41(5): 582-587.
[60] Wang C, Yuan Y, Liang F, et al. Experimental investigation of local scour around cylindrical pile foundations in a double-layered sediment under current flow[J]. Ocean Engineering. 2022, 251: 111084.
[61] Liu X, Chen X, Wang L, et al. Investigation on the scour properties of pile under the current considering the geomechanical parameters of seabed: Time scale[J]. Ocean Engineering. 2022, 262: 112175.
[62] Sang L, Wang J, Cheng T, et al. Local Scour around Tandem Double Piers under an Ice Cover[J]. Water. 2022, 14(7): 1168.
[63] Hamidifar H, Mohammad Ali Nezhadian D, Carnacina I. Experimental study of debris-induced scour around a slotted bridge pier[J]. Acta Geophysica. 2022, 70(5): 2325-2339.
[64] Miyab N M, Fazloula R, Heidarpour M, et al. Experimental Design of Nature-Based-Solution Considering the Interactions between Submerged Vegetation and Pile Group on the Structure of the River Flow on Sand Beds[J]. Water. 2022, 14(15): 2382.
[65] 夏开奇,钟锐. T50R型多波束在桥梁基础冲刷中的应用[J]. 中国水运(上半月). 2022(7): 102-104.
[66] 吕骥,程武伟,樊剑甲. 基于模型尺度调整算法的水下冲刷数据处理[J]. 水利水电科技进展. 2022, 42(3): 81-85.
[67] 姚昌荣,周雅宁,郭来栋,等. 桥墩冲刷坑形态试验测绘新方法[J]. 水道港口. 2022, 43(4): 549-554.
[68] 陈亚东,张清,丁兵. 桥梁水下基础附近瞬时冲淤地形数据自动获取智能系统研制[J]. 中国水运(上半月). 2022(7): 49-51.
[69] 倪飞,陈红,罗云峰,等. 群桩基础周围局部冲刷地形瞬时绘制系统研制[J]. 重庆交通大学学报(自然科学版). 2022, 41(4): 113-119, 132.
[70] 杜杰贵,毋浩杰,康源. 桥梁基础冲刷监测方法研究进展[J]. 自动化与仪器仪表. 2022(6): 1-6, 12.
[71] 陈旭辉,唐永圣,梅曦,等. 基于水流冲击响应的桥墩冲刷识别方法研究[J]. 河南科学. 2022, 40(9): 1441-1448.
[72] 姚博川,陈彦,董政显,等. 基于动力参数的桥墩冲刷深度识别方法[J]. 科学技术创新. 2022(22): 160-163.
[73] Bento A M, Couto L, Viseu T, et al. Image-Based Techniques for the Advanced Characterization of Scour around Bridge Piers in Laboratory[J]. Journal of Hydraulic Engineering. 2022, 148(6).
[74] 胡峰强,陈家俊,胡思聪,等. 桥梁冲刷深度计算方法评价及基础合理埋置深度研究[J]. 公路交通科技. 2022, 39(03): 62-70.
[75] 杨程生,蒋振雄,俞竹青,等. 长江下游大型沉井基础局部冲刷计算公式研究[J]. 海洋工程. 2022, 40(3): 105-114.
[76] 王甫学,赵波. 中美规范桥梁基础局部冲刷计算方法对比[J]. 港工技术. 2022, 59(4): 1-6.
[77] Chaudhuri S, Pandey M, Debnath K, et al. A comparative study on equilibrium scour volume around circular cylinders in clay–sand mixed cohesive beds, at near threshold velocity of sand – an experimental approach[J]. Water Supply. 2022, 22(8): 6777-6791.
[78] Chen X, Liu X, Li H, et al. Effects of seabed geotechnical properties on scour mechanism at the pile in non-cohesive soils: Experimental study[J]. Ocean Engineering. 2022, 254: 111302.
[79] Abouelfetouh Abdelaziz A, Lim S Y. Development of scour hole depth around setback abutment in a compound channel[J]. Water and Environment Journal. 2022, 36(1): 18-29.
[80] Hoffmans G, Buschman F, Van der Wal M. Turbulence approach for predicting scour at abutments[J]. Journal of hydraulic research. 2022, 60(4): 588-605.
[81] 陈羿名,李怡,渠庚,等. 砂质河道桥墩局部冲刷计算经验公式改进和验证[J]. 长江科学院院报. 2022: 1-6.
[82] Li J, Kong X, Yang Y, et al. CFD investigations of tsunami-induced scour around bridge piers[J]. Ocean Engineering. 2022, 244: 110373.
[83] Pizarro A, Ettmer B, Link O. Relative importance of parameters controlling scour at bridge piers using the new toolbox ScourAPP[J]. Computers & Geosciences. 2022, 163: 105117.
[84] Song Y, Xu Y, Ismail H, et al. Scour modeling based on immersed boundary method: A pathway to practical use of three-dimensional scour models[J]. Coastal Engineering. 2022, 171: 104037.
[85] 王秋生,邓洪森,周鹏展. 基于最小二乘支持向量机的桥墩局部冲刷深度预测方法[J]. 水电能源科学. 2022, 40(1): 120-123.
[86] Choi S, Choi S. Prediction of Local Scour around Bridge Piers in the Cohesive Bed Using Support Vector Machines[J]. KSCE Journal of Civil Engineering. 2022, 26(5): 2174-2182.
[87] Rathod P, Manekar V L. Comprehensive approach for scour modelling using artificial intelligence[J]. Marine georesources & geotechnology. 2022, ahead-of-print(ahead-of-print): 1-15.
[88] Devi G, Kumar M. Estimation of local scour depth around twin piers using gene expression programming (local scour around twin piers)[J]. Water Supply. 2022, 22(6): 5915-5932.
[89] Wang T, Reiffsteck P, Chevalier C, et al. A novel extreme gradient boosting algorithm based model for predicting the scour risk around bridge piers: application to French railway bridges[J]. European Journal of Environmental and Civil Engineering. 2022: 1-19.
[90] Yousefpour N, Correa O. Towards an AI-based Early Warning System for Bridge Scour[Z]. arXiv, 2022.
[91] 王亚伟,朱金,郑凯锋,等. 考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动[J]. 西南交通大学学报. 2022: 1-8.
[92] Zhu J, Wang Y, Li Y, et al. Scour effect on a sea-crossing bridge under combined action of service and extreme seismic loads[J]. Journal of Central South University. 2022, 29(8): 2719-2742.
[93] 刘昂,田璐,陈启刚,等. 局部冰塞体尺寸对桥墩绕流和冲刷的影响[J]. 公路交通科技. 2022, 39(11): 84-94, 150.
[94] Hu H T, Wang J, Cheng T J, et al. Channel Bed Deformation and Ice Jam Evolution around Bridge Piers[J]. WATER. 2022, 14(11).
[95] Hou Z, Wang J, Sui J, et al. Impact of Local Scour around a Bridge Pier on Migration of Waved-Shape Accumulation of Ice Particles under an Ice Cover[J]. Water (Basel). 2022, 14(14): 2193.
[96] 吴永刚,魏松,段海澎. 桥墩基础局部冲刷防护措施研究综述[J]. 安徽建筑. 2022, 29(10): 138-139, 170.
[97] 闫正余,田华,康文,等. 水中建筑结构物基础冲刷防护研究综述[J]. 海洋湖沼通报. 2022, 44(2): 150-156.
[98] 杨程生,俞竹青,夏鹏飞,等. 河床预开挖下超大型沉井基础局部冲刷试验研究[J]. 桥梁建设. 2022, 52(1): 72-79.
[99] 赵东梁,冯先导,韩鹏鹏,等. 深水圆端型沉井基础冲刷防护研究[J]. 人民长江. 2022, 53(12): 145-150.
[100] Moghanloo M, Vaghefi M, Ghodsian M. Experimental Study on the Effect of Thickness and Level of the Collar on the Scour Pattern in 180° Sharp Bend with Bridge Pier[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2022, 46(1): 535-553.
[101] Raeisi N, Ghomeshi M. A laboratory study of the effect of asymmetric-lattice collar shape and placement on scour depth and flow pattern around a bridge pier[J]. Water Supply. 2022, 22(1): 734-748.
[102] Garg V, Setia B, Singh V, et al. Scour protection around bridge pier and two-piers-in-tandem arrangement[J]. ISH Journal of Hydraulic Engineering. 2022, 28(3): 251-263.
[103] Williams P, Balachandar R, Roussinova V, et al. Particle image velocimetry evaluation of flow-altering countermeasures for local scour around a submerged circular cylinder[J]. INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH. 2022, 37(4): 411-423.
[104] Luo K, Si Y, Lu S, et al. Characteristics of reducing local scour around cylindrical pier using a horn-shaped collar[J]. Journal of Engineering and Applied Science. 2022, 69(1).
[105] Khajavi M, Kashefipour S M, Shafai Bejestan M. Bridge Abutment Protection against Scouring for Unsteady Flow Conditions[J]. Periodica Polytechnica Civil Engineering. 2020.
[106] 华鑫,李雨杰,刘海江,等. 波流作用下单桩冲刷MICP防护试验研究[J]. 地基处理. 2022, 4(3): 190-200.
[107] 罗巍,程永舟,黄筱云,等. 套筒对波流作用下桩基局部冲刷防护试验研究[J]. 海洋通报. 2022, 41(1): 102-113.
[108] 赵寒燕,乐绍林,周欢,等. 中性网格对圆桩局部冲刷的水动力弱化及防护效果分析[J]. 海洋工程. 2022, 40(5): 111-120.
[109] 王东辉,潘俊志,遆子龙. 基于时域边界元的跨海桥梁下部结构波浪荷载计算方法[J]. 桥梁建设. 2022, 52(6): 66-72.
[110] Ge L, Liu M, Liu H, et al. Experimental Study on Wave Force on Large-Scale Pier Column Foundation of Sea-Crossing Bridge for Preserving the Marine Environment[J]. Mathematical Problems in Engineering. 2022.
[111] Ti Z, You H. Time domain boundary element modeling of coupled interaction between ocean wave and elastic bridge pier[J]. Ocean Engineering. 2022.
[112] Xu G, Wei H, Xue S, et al. Predicting wave forces on coastal bridges using genetic algorithm enhanced ensemble learning framework[J]. Ocean Engineering. 2022, 266(P3).
[113] Xu G, Ji C, Wei H, et al. A novel ensemble model using artificial neural network for predicting wave-induced forces on coastal bridge decks[J]. Engineering with Computers. 2022.
[114] Wang S, Jiang J. Numerical Simulation of Bidirectional Flow and Solid Coupling of Single Pile and Single Row Pile Column and Wave[J]. World Journal of Engineering and Technology. 2022, 10(04): 679-690.
[115] 何一宽,韩冰,季文玉,等. 承台-群桩结构波浪力理论分析[J]. 中国公路学报. 2022, 35(11): 9.
[116] Wang Z, Qiu W, Jiang M. Random wave action on pile group foundations with complex geometry for sea-crossing bridges[J]. Ocean Engineering. 2023, 269.
[117] Wang Z, Qiu W. Mechanical model for predicting wave loads on complex pile group foundations under linear wave action[J]. Engineering Analysis with Boundary Elements. 2022, 145.
[118] 周远洲,遆子龙,张明金,等. 跨海桥梁大尺度基础波浪荷载计算方法对比研究[J]. 防灾减灾工程学报. 2022.
[119] 王君杰,叶乔丹. 独柱墩-固定式防船撞装置波浪荷载研究[J]. 中国公路学报. 2022, 35(10): 135-146.
[120] 王君杰,叶乔丹,王昌将. 独柱墩-自浮式防船撞装置波浪荷载研究[J]. 工程力学. 2022, 39(8): 172-184.
[121] 叶乔丹,王君杰. 防船撞装置对桥梁下部结构波浪荷载的影响研究[J]. 公路. 2022, 67(2): 63-69.
[122] 康啊真,顾宇航,张东明,等. 哑铃型桥梁结构畸形波浪力水槽试验及简化算法[J]. 西南交通大学学报. 2022: 1-9.
[123] Pan J, Ti Z, You H. Probability Distribution Analysis of Hydrodynamic Wave Pressure on Large-Scale Thin-Walled Structure for Sea-Crossing Bridge[J]. Journal of Marine Science and Engineering. 2023, 11(1): 81.
[124] 崔苗苗,毕昕宇,李鑫,等. 跨海桥梁基础波浪力断面对比与研究[J]. 铁道标准设计. 2022: 1-8.
[125] Wei K, Hong J, Jiang M, et al. A review of breaking wave force on the bridge pier: Experiment, simulation, calculation, and structural response[J]. Journal of Traffic and Transportation Engineering (English Edition). 2022.
[126] Wei K, Hong J, Li Y. Characterizing breaking wave slamming loads on bridge piers with probabilistic models of slamming maxima, rise and decay times[J]. Ocean Engineering. 2022, 266(P4).
[127] Cui T, Kamath A, Wang W Z, et al. Focused Plunging Breaking Waves Impact on Pile Group in Finite Water Depth[J]. JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME. 2022, 144(3).
[128] Liu S, Liu Z. Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope[J]. Sustainability. 2022, 15(1).
[129] 魏凯,赵文玉,洪杰,等. 卷破波斜向作用下方形桥墩砰击荷载研究[J]. 工程力学. 2022: 1-8.
[130] Ding H, Huang B, Cheng L, et al. Wave forces and wave run-up on a truncated rectangular column based on the hydrodynamic experiment[J]. Ocean engineering. 2022(Feb.15): 246.
[131] Li J, Ji X, Yue L, et al. An improved method for calculating the wave run-up on a vertical cylinder based on the velocity stagnation head theory[J]. Ocean Engineering. 2022, 266(P3).
[132] Wang B, Li Y, Wu F, et al. Numerical Investigation of Wave Run-Up and Load on Fixed Truncated Cylinder Subjected to Regular Waves Using OpenFOAM[J]. Water. 2022, 14(18).
[133] Yang S, Tan Z, Yang W, et al. Experimental study on hydrodynamic interaction between dam-break waves and circular pier[J]. Ocean Engineering. 2022.
[134] 谭庄,勾红叶,潘凯,等. 深水高墩连续刚构桥施工期流固耦合动力响应研究[J]. 桥梁建设. 2022, 52(4): 82-88.
[135] 郑建,贾宏宇,吴炜昌,等. 急流冲击下大跨度连续刚构桥动力响应分析[J]. 铁道标准设计. 2022: 1-7.
[136] 郑晨辉,孙昊,高源. 不同波流方向下双墩动力响应影响分析[Z]. 中国湖北武汉: 20227.
[137] Li L, Yue L, Xing X F. Wave current force test of deep water foundation of bridge in marine environment[J]. Frontiers in Earth Science. 2023.
[138] Zhao E, Xia X, Gao J, et al. Performance of coastal circular bridge pier under joint action of solitary wave and sea current[J]. Ocean engineering. 2022, 250: 111033.
[139] 文望青,毕昕宇,韩嘉怡,等. 跨海桥梁圆端形基础波流力缩尺效应研究[J]. 世界桥梁. 2023, 51(01): 78-84.
[140] Chen L, Jeng D. Study on the seabed response around a dumbbell cofferdam under combined wave and current loading[J]. Ocean Engineering. 2022, 256.
[141] Yun G, Liu C. Dynamic analysis of bridge structures under combined earthquakes and wave loadings based on a simplified nonlinear Morison equation considering limit wave steepness[J]. Ocean Engineering. 2022, 265.
[142] Yun G, Liu C. Nonlinear dynamic analysis of the deep-water bridge piers under combined earthquakes and wave actions[J]. Ocean Engineering. 2022.
[143] Alsultani R, Karim I R, Khassaf S. Dynamic Response of Deepwater Pile Foundation Bridge Piers under Current-wave and Earthquake Excitation[J]. Engineering and Technology Journal. 2022, 40(11): 1-16.
[144] Alsultani R, Karim I R, Khassaf S I. Dynamic Response Analysis of Coastal Piled Bridge Pier Subjected to Current, Wave and Earthquake Actions with Different Structure Orientations[J]. Concrete Construction - World of Concrete. 2022.
[145] 李杰,王澳,杨大雨,等. 波,流对库区四柱框架墩连续梁动力响应影响分析[J]. 昆明理工大学学报:自然科学版. 2022(004): 47.
[146] Zhang J, Wei K, Li J. Integrated assessment of the hydrodynamic added mass of the deep-water pile-cap foundation considering pile group - pile cap interaction[J]. Ocean Engineering. 2022, 244: 110418.
[147] Chen Y, Lv Y, Wu K, et al. Centrifuge shaking table study on the hydrodynamic effects on a pile foundation bridge pier in soft soil under earthquakes[J]. Marine Structures. 2022, 85: 103261.
[148] Huang Y, Wang P, Zhao M, et al. Dynamic response of sea-crossing bridge under combined seismic and wave-current action[J]. Structures. 2022, 40.
[149] Gan X, Luo H, Xu C, et al. Dynamic responses of long-span road–rail cable-stayed bridge under combined seismic and wave action[J]. Ocean Engineering. 2023, 270: 113588.
[150] 罗浩,甘贤备,晏亮,等. 地震和波浪联合作用下大跨度斜拉桥的动力响应研究[J]. 桥梁建设. 2022, 52(05): 93-99.
[151] Cui S, Guo C, Zeng G, et al. Influence of hydrodynamic pressure on fragility of high-pier continuous rigid frame bridge subjected to ground motion[J]. Ocean Engineering. 2022, 264: 112516.
[152] 苏京华,柳春光. 地震、波浪联合作用下深水大跨桥梁响应分析[J]. 水利与建筑工程学报. 2022, 20(03): 140-146.
[153] 谷音,张晓龙,郑福鼎,等. 近海箱型梁桥受海啸波浪力作用试验研究[J]. 振动与冲击. 2022, 41(13): 300-307.
[154] 魏魁,张彤,黄博. 基于势流理论的跨海桥箱梁斜向波浪荷载作用研究[J]. 桥梁建设. 2022, 52(03): 90-97.
[155] Zhu D, Dong Y, Frangopol D M. Experimental and numerical investigation on wave impacts on box-girder bridges[J]. 2022.
[156] Zhang C, You D, Qin H. Numerical study on the bridge deck responses under solitary waves[C]. Shanghai, China: International Society of Offshore and Polar Engineers, 2022.
[157] Xu Y, Xue X G. Failure mechanism and vulnerability assessment of coastal box-girder bridge with laminated rubber bearings under extreme waves[J]. 2022.
[158] Huang B, Luo W, Ren Q, et al. Random wave forces on the submerged box-girder superstructure of coastal bridges based on potential flow theory[J]. Ocean engineering. 2022(Mar.15): 248.
[159] Jia L, Zhang Y, Zhu D, et al. 3D Numerical Modeling and Quantification of Oblique Wave Forces on Coastal Bridge Superstructures[J]. Marine Science and Engineering. 2022.
[160] Zheng Z, Zhao C, He Y, et al. Numerical Modeling and Hydrodynamic Analysis of an Offshore Bridge Superstructure[J]. 2022.
[161] Farvizi F, Melville B W, Shamseldin A Y, et al. Experimental investigation of the effects of contraction on tsunami-induced forces and pressures on a box section bridge[J]. JOURNAL OF HYDRO-ENVIRONMENT RESEARCH. 2022, 40.
[162] Rahman S. Physical assessment of wave forces on bridge girder impacted by potential tsunami hazard[J]. ISH Journal of Hydraulic Engineering. 2020(5).
[163] Huynh L, Chu C, Wu T. Hydrodynamic loads of the bridge decks in wave-current combined flows[J]. Ocean Engineering. 2023, 270: 113520.
[164] Qu K, Wen B H, Yao Y, et al. Numerical study on hydrodynamic characteristics of movable coastal bridge deck under joint action of solitary wave and current[J]. Ocean Engineering. 2022, 262: 112143.
[165] 谷音,郑福鼎. 海啸数值模拟及桥梁上部结构冲击动力作用研究[J]. 自然灾害学报. 2022, 31(6): 95-103.
[166] 杨志莹,祝兵,黄博,等. 海啸作用下跨海桥梁上部结构流-固耦合数值研究[J]. 工程力学. 2023: 1-13.
[167] Yuan P, Zhu D M, Dong Y, et al. Response-based bridge deck limit state considering component-level failure under extreme wave[J]. MARINE STRUCTURES. 2022, 83.
[168] Michaltsos G T, Sophianopoulos D S, Konstantakopoulos T G. A Simple Mathematical Model for Extreme Flood Actions on Superstructures of Coastal Bridges[J]. Engineering Science & Technology. 2022: 240-270.
[169] Istrati D, Hasanpour A. Numerical Investigation of Dam Break-Induced Extreme Flooding of Bridge Superstructures[J]. 3rd International Conference on Natural Hazards. 2022.
[170] Tang Z, Yang Y, Melville B W. Hydrodynamic Uplift Forces on Submerged Bridge Decks during Bedform Migration[J]. Hydraulic Engineering. 2022.
[171] Wei C X, Wang W J, Zhou D C. Dynamic responses of a freestanding bridge tower under wave and wave-current loads[J]. STRUCTURAL ENGINEERING AND MECHANICS. 2022, 82(4): 491-502.
[172] 罗浩,甘贤备,晏亮,等. 大跨度跨海铁路连续刚构桥波浪荷载动力响应研究[J]. 铁道建筑. 2022, 62(01): 87-91.
[173] 罗浩,徐楚懿,杨彤麟,等. 基于P-M谱的波浪荷载数值模拟及其对跨海斜拉桥的冲击响应规律研究[J]. 计算力学学报. 2022: 1-8.
[174] Leng S, Xu G, Wu Q, et al. Review on tsunami–bridge interaction[J]. Intelligent Transportation Infrastructure. 2022, 1.
[175] Huang B, Liao L, Ren Q, et al. Fragility analysis of the box-girder coastal bridge with different connections subjected to extreme random waves[J]. Ocean engineering. 2022(Feb.1): 245.
[176] Chen M, Huang B, Yang Z, et al. The Influence of Lateral Restraining Stiffness on the Box-Girder Superstructure under Unbroken Solitary Waves[J]. Marine Science and Engineering. 2022.
[177] Xue S, Xie W, Xu G, et al. A novel combined countermeasure of fairing-openings for mitigating extreme wave forces on typical coastal low-lying bridges[J]. Ocean Engineering. 2022, 257: 111717.
[178] Wu Q, Xu G, Xue S, et al. Experimental and numerical investigation of combined countermeasure for mitigating tsunami forces on typical coastal T-girder bridge deck[J]. Ocean Engineering. 2023, 268: 113419.
[179] Kabir S M I, Ahmari H, Dean M. Experimental study to investigate the effects of bridge geometry and flow condition on hydrodynamic forces[J]. Journal of Fluids and Structures. 2022, 113: 103688.
[180] Yang W L, Hou H L, Zhu Q L, et al. Study on Further Improvement of Anti-tsunami Ability of a New Type Bridge Pier[J]. JOURNAL OF EARTHQUAKE AND TSUNAMI. 2022, 16(04).
[181] Xu G, Jin Y, Xue S, et al. Hydrodynamic shape optimization of an auxiliary structure proposed for circular bridge pier based on a developed adaptive surrogate model[J]. Ocean Engineering. 2022, 259.
[182] Xue S, Xu Y, Xu G, et al. A novel tri-semicircle shaped submerged breakwater for mitigating wave loads on coastal bridges part I: Efficacy[J]. Ocean Engineering. 2022, 245: 110462.
[183] 魏凯,张枫,廖翔,等. 张力腿基础刚度对大跨浮式悬索桥风-浪动力响应的影响[J]. 土木工程学报. 2022, 55(6): 47-61, 101.
[184] 陈徐均,黄恒,计淞,等. 等效弹性铰接体模拟单个桥节的海上浮桥计算方法[J]. 陆军工程大学学报. 2022, 1(1): 73-79.
[185] Cui M H, Cheng Z S, Moan T. A generic method for assessment of inhomogeneous wave load effects of very long floating bridges[J]. MARINE STRUCTURES. 2022, 83.
[186] Huang H, Chen X J, Liu J Y, et al. Structural analysis method of a pontoon-separated floating bridge connected by elastic hinges[J]. SHIPS AND OFFSHORE STRUCTURES. 2022, 17(9): 2045-2057.
[187] Wan L, Dai J, Jiang D Q, et al. Parametric study and dynamic response analysis of three single curved discrete pontoon floating bridges[J]. SHIPS AND OFFSHORE STRUCTURES. 2022, 17(8): 1788-1801.
[188] Martin S, Cato D. Aspects of Collision Response of Long-Span Floating Bridges[J]. ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. 2022.
[189] Zhao C, Jiang Z, Leira B J, et al. Dynamic response characteristics of the 67-type railway pontoon bridge[J]. SN Applied Sciences. 2022, 4(11).
[190] 刘为平,朱卫忠,沈海鹏,等. 可自浮式高架栈桥有限元子结构超单元法建模与静力分析[J]. 陆军工程大学学报. 2022, 1(2): 66-71.
[191] He Y, Han B, Ji W, et al. Dynamic analysis of floating piers for curved bridge under wave load and effect of submerged annular rippled breakwater[J]. Ocean Engineering. 2022, 266: 112946.
[192] Rodrigues J M, Viuff T, ?kland O D. Model tests of a hydroelastic truncated floating bridge[J]. Applied Ocean Research. 2022, 125: 103247.
[193] Xiang S, Cheng B, Zhang F, et al. An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model[J]. China Ocean Engineering. 2022, 36(5): 682-696.
[194] Fenerci A, Kv?le K A, Xiang X, et al. Hydrodynamic interaction of floating bridge pontoons and its effect on the bridge dynamic responses[J]. Marine Structures. 2022, 83: 103174.
[195] Dai J, Abrahamsen B C, Viuff T, et al. Effect of wave-current interaction on a long fjord-crossing floating pontoon bridge[J]. Engineering Structures. 2022, 266: 114549.
[196] 向升,章宋衍,程斌. 基于时域分析的浮式刚构桥浪致动力响应特性研究[J]. 桥梁建设. 2022, 52(3): 98-105.
[197] 苗玉基,陈徐均,沈海鹏,等. 基于三维水弹性理论的箱桁组合式浮式栈桥运动响应研究[J]. 船舶力学. 2022, 26(5): 714-726.
[198] Xiang S, Cheng B, Tang M, et al. Hydrodynamic characteristics of deep-water bridge floating foundations with different mooring systems[J]. Ocean Engineering. 2022, 257: 111635.
[199] 梁世龙,怀利敏,康正凌. 多浮箱拼接浮体模拟试验方案设计[J]. 广东造船. 2022, 41(6): 63-66.
[200] Wen B H, Qu K, Lan G Y, et al. Numerical study on hydrodynamic characteristics of coastal bridge deck under joint action of regular waves and wind[J]. Ocean Engineering. 2022, 245: 110450.
[201] Liu Z, Guo A, Liu J, et al. Experimental investigation of loads of coastal bridge deck under the combined action of extreme winds and waves[J]. Ocean Engineering. 2022, 252: 111225.
[202] Fang C, Xu Y L, Li Y L. Optimized C-vine copula and environmental contour of joint wind-wave environment for sea-crossing bridges[J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS. 2022, 225.
[203] Fang C, Li Y L, Xu Y L. Nonlinear dynamic response of sea-crossing bridges to 3D correlated wind and wave loads[J]. ADVANCES IN STRUCTURAL ENGINEERING. 2022, 25(16): 3268-3283.
[204] Ti Z, Zhou Y. Frequency domain modeling of long-span sea-crossing bridge under stochastic wind and waves[J]. Ocean Engineering. 2022, 255: 111425.
[205] 赵瑞欣,刘旭照,宋永亮,等. 风-浪-潮耦合作用下桩基荷载确定方法研究[J]. 公路. 2022, 67(11): 111-115.
[206] 崔圣爱,郭晨,张猛,等. 考虑风浪相关性的列车-桥梁耦合振动分析[J]. 东南大学学报(自然科学版). 2022, 52(04): 684-689.
[207] Li X, Wandji Zoumb P A. Extraction of the unknown hydrodynamic pressure from stochastic responses of the train-bridge system under wind and wave actions using iterative least square estimation and Kalman filter model[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2022, 231: 105202.
[208] Zoumb P, Li X Z. Fourier regression model predicting train-bridge interactions under wind and wave actions[J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING. 2022.
[209] Bai X Y, Jiang H, Song G S, et al. Extreme responses of sea-crossing bridges subjected to offshore ground motion and correlated extreme wind and wave[J]. OCEAN ENGINEERING. 2022, 247.
全部回复(0 )
只看楼主 我来说两句抢沙发