知识点:电机控制知识
在工程应用中,汽车用永磁同步电动机定子采用直槽结构,定转子槽极配合为8极48槽,基于该种结构的永磁转子对应不同的凸极比,其外特性如何、磁钢用量多少、哪种形式转子性能最优、是否符合高性价比要求,本文将针对这些热点问题进行详细的分析。
永磁同步电动机的主要结构由定子(包括定子铁心、线圈、机壳等)、永磁转子(包括转子铁心、永磁体、转轴等)、前后端盖、轴承、接线盒以及反馈组件等多个主要零部件组成。
永磁同步电动机的电磁原理与他励直流电动机类似。永磁同步电动机的旋转控制采用旋转坐标系的思想,将三相定子电流进行解耦,分解成专用于励磁的直轴分量,以及专用于产生输出转矩的交轴分量,两种分量互相独立互不耦合。
对于永磁同步电动机来说,定子影响主要体现在定子绕组分布情况、定子槽数等,这与异步电机区别不大;而转子的影响则体现在整个磁路上,不同结构的永磁转子对电机性能影响极大。永磁转子按结构一般分为表贴式和内置式两种,内置式转子结构相对复杂,本文以内置式转子为研究点进行展开。
永磁同步电动机凸极比ρ一般指交直轴电感(或者是电抗)之比。即:
(1)
表贴式交直轴电感接近相等,其凸极比ρ=1;而内置式永磁同步电动机根据永磁体在转子中的排布,形成多种不同凸极比的转子结构,主要分为ρ>1和ρ<1两种情况。
永磁同步电动机的基本向量关系如图1所示。
图1 永磁同步电动机基本向量图
根据图1的向量关系及永磁同步电动机的电磁原理,得到电磁转矩Te的计算公式如下:
(2)
式中:p为极对数;β为弱磁角;ψf为永磁磁链;Ia为定子电流;
从式(2)中可以看出,内置式永磁同步电动机电磁转矩由永磁转矩和磁阻转矩两部分组成。永磁转矩与弱磁角成余弦关系,且与励磁磁链成正比;而磁阻转矩与两倍弱磁角成正弦关系,还与交直轴电感之差成正比。
由电机电磁场理论有:
ψf=NΦ=NBS
(3)
式中:N为每极线圈匝数;B为每极气隙磁密;S为每极磁通面积。又根据电感差:
(Lq-Ld)∝ρ
(4)
不计弱磁角度、极对数以及电枢电流影响,最终可以推得:
Te∝BSN
(5)
Te∝ρ
(6)
从式(3)~式(6)可以看出,内置式永磁同步电动机的电磁转矩与永磁电机每极线圈匝数、每极气隙磁密、每极磁通面积以及凸极比成正相关关系。
本文以某款国产汽车电机的主体结构为例,其具体性能参数指标如表1所示,进行典型规格优化设计。
表1 某款国产汽车电机性能指标参数
在研究过程中,先结合工程实际应用,设定相同的定子参数,在其基础上进行市场调研,结合理论研究成果,采用磁链、凸极比均有所不同的转子结构进行仿真对比,汇总数据。然后针对仿真数据进行分析,分别计算最大输出功率、最大转矩、反电动势系数KE值以及永磁体体积,并分别计算功率磁钢体积比、转矩磁钢体积比、以及反电动势系数磁钢体积比,比较各转子方案性能优势及经济性。
2.2.1 建立模型
根据表1的性能指标,进行5种转子拓扑结构的计算:三角形、混合型、切向型、V字形及一字形等,具体结构及交直轴分布如图2所示。
图2 不同转子拓扑结构及交直轴分布
按图2的转子拓扑结构建模,槽极配合为经典的8极48槽,定子绕组形式采用1~6的分布式双层绕组。
2.2.2 设定激励条件
根据永磁同步电动机工作原理,设定电机定子输入电流为三相正弦电流,具体激励表达式如下:
iA=Imaxsin(2πft+β)
iB=Imaxsin(2πf t+β-2π/3)
iC=Imaxsin(2πf t+β+2π/3)
式中:Imax为电机线电流峰值;f为电流频率;t为时间;β为弱磁角。
在上述激励条件下考虑损耗设置方面,铁心损耗计算时考虑定、转子铁心,涡流损耗计算时考虑定、转子铁心以及磁钢表面涡流损耗影响。
2.2.3 设定边界条件
在仿真时,各方案设定相同的边界条件:电机额定转速为2 000 r/min,最高转速为10 000 r/min,电机定子相同,且线电流峰值按Imax=141.4 A(有效值为100 A),电机弱磁初始角按45°进行扫描分析。
相关推荐:
0人已收藏
0人已打赏
免费1人已点赞
分享
电气工程原创版块
返回版块2.2 万条内容 · 579 人订阅
阅读下一篇
伺服电机的十大故障分析,看完你也是电机专家!知识点:伺服电机 三相交流伺服电机应用广泛,但经过长期运行后,会发生各种故障。及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要工作。
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳886666
回复 举报