土木在线论坛 \ 电气工程 \ 电气工程原创版块 \ 全解电机的旋转原理、结构、类型、故障排除

全解电机的旋转原理、结构、类型、故障排除

发布于:2023-02-21 10:43:21 来自:电气工程/电气工程原创版块 [复制转发]

知识点:电机的旋转

电机,在设备领域无处不在。电机类型、软启动方式,选型步骤,损坏原因方式处理方法,优劣电机区别在哪.....本期我们就一同来看看。        

       
图片                  
   


电机旋转原理              
                


1、电流、磁场和力


首先,为了便于后续电机原理说明,我们来回顾一下有关电流、磁场和力的基本定律/法则。虽然有一种怀旧的感觉,但如果平时不常使用磁性元器件,就很容易忘记这些知识。

图片          

2、旋转原理详解  


下面介绍一下电机的旋转原理。我们结合图片和公式来说明。

当导线框为矩形时,要考虑到作用在电流上的力。

图片          


作用于边a、c部分的力F为:

图片          

产生以中心轴为心轴的转矩。

例如,当考虑到旋转角度仅为θ的状态时,与b和d成直角作用的力为sinθ,因此a部分的转矩Ta由以下公式表示:

图片          

以相同的方式考虑c部分,则转矩加倍,并生成由以下公式计算出来的转矩:

图片          

由于矩形的面积为S=hl,因此将其代入上述公式可得出以下结果:

图片          

该公式不仅适用于矩形,也适用于圆形等其他常见形状。电机就是利用了该原理。

关键要点:

电机的旋转原理遵循电流、磁场和力相关的定律(法则)。

  
         
直流电机 VS 交流电机                      
                        
图片

1、直流、交流电机区别

图片
直流电机结构示意图

图片
交流电机结构示意图

(1)电源方式不同:
直流电机:使用直流电做为电源;
交流电机:使用交流电做为电源。

(2)结构上不同:
直流电机的原理相对简单,但结构复杂,不便于维护。而交流电机原理复杂但结构相对简单,而且比直流电机便于维护。

图片
直流电动机
(3)价格上不同:
功率相同的直流电机高于交流电机,包括控制速度的调速装置也是直流调速装置高于交流调速装置的价格,当然结构和维护也有很大的差异。

(4)性能方面不同:
因为直流电机的速度稳定,转速控制精准,是交流电机无法打到的,所以在转速的严格要求下不得不采用直流电机替代交流电机。交流电机调速相对复杂,但由于化工厂使用交流电源而应用广泛。


同步电机 VS 异步电机                      
                        
同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念。

图片
图片
步进电机的工作原理

 
1、同步电机     
原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。  
特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。同步电机转速恒定,不受负载变化影响。  

 
2、异步电机    
原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。  
图片
3、同步和异步的具体区别:  
(1)同步电机可以发出无功功率,也可以吸收;异步电机只能吸收无功。  
(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。  
(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。同步电动机可以用以改进供电系统的功率因素。
 

 
4、三相异步电动机(鼠笼)
图片      
图片      

(1)结构:

转子:鼠笼

定子:3绕组


(2)原理:

三相异步电机(Triple-phase asynchronous
motor)是感应电动机的一种,同时接入380V三相交流电流(相位差120度)形成旋转磁场,鼠笼产生感应电流,进而运动。靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。


(3)启动:

星三角启动、降压启动。


(4)换向:

交换定子三相中任意两个接头的接线。


 (5)调速:调速困难。


(6)特点:

由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速旋转,存在转差率,所以叫三相异步电动机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。


与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。


普通电机 VS 变频电机                      
                        
1、普通、变频两类电机区别   

首先,普通电机不能当变频电机使用。普通电动机是按恒频恒压设计的,不可能完全适应变频器调速的要求,因此不能多做变频电机使用。

(1)变频器对电机的影响主要在电动机的效率和温升
变频器在运行中能产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行,里面的高次谐波会引起电动机定子铜耗、转子铜耗、铁耗及附加损耗增加,最为显著的是转子铜耗,这些损耗会使电动机额外发热,效率降低,输出功率减小,普通电动机温升一般要增加10%-20%。

(2)电动机的绝缘强度问题
变频器载波频率从几千到十几千赫,使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严重的考验。

(3)谐波电磁噪声与震动
普通电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次谐波与电动机电磁部分固有空间谐波相互干涉,形成各种电磁激振力,从而加大噪声。由于电动机的工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各结构件的固有振动频率。

(4)低转速时的冷却问题
当电源频率较低时,电源中的高次谐波所引起的损耗较大;其次变通电机转速降低时,冷却风量与转速的三次方成正比减小,致使电机热量散发不出去,温升急剧增加,难以实现恒转矩输出。


2、如何区分普通电机和变频电机?

(1)绝缘等级要求更高
一般变频电机的绝缘等级为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。

(2)变频电机的振动、噪声要求更高
变频电机要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。

(3)变频电机冷却方式不同
变频电机一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。

(4)保护措施要求不同
对容量超过160KW变频电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。

(5)散热系统不同
变频电机散热风扇采用独立电源供电,保证持续的散热能力。


步进电机
                     
                        
步进电机是一种直接将电脉冲转化为机械运动的机电装置, 通过控制施加在电机线圈上的电脉冲顺序、 频率和数量, 可以实现对步进电机的转向、 速度和旋转角度的控制。

在不借助带位置感应的闭环反馈控制系统的情况下、 使用步进电机与其配套的驱动器共同组成的控制简便、 低成本的开环控制系统, 就可以实现精确的位置和速度控制。

基本结构:
图片
 
工作原理:
步进电机驱动器根据外来的控制脉冲和方向信号, 通过其内部的逻辑电路, 控制步进电机的绕组以一定的时序正向或反向通电, 使得电机正向/反向旋转, 或者锁定。

以1.8度两相步进电机为例:当两相绕组都通电励磁时, 电机输出轴将静止并锁定位置。在额定电流下使电机保持锁定的最大力矩为保持力矩。如果其中一相绕组的电流发生了变向, 则电机将顺着一个既定方向旋转一步( 1.8度)。

同理, 如果是另外一项绕组的电流发生了变向, 则电机将顺着与前者相反的方向旋转一步( 1.8度)。当通过线圈绕组的电流按顺序依次变向励磁时, 则电机会顺着既定的方向实现连续旋转步进, 运行精度非常高。对于1.8度两相步进电机旋转一周需200步。

两相步进电机有两种绕组形式:双极性和单极性。双极性电机每相上只有一个绕组线圈, 电机连续旋转时电流要在同一线圈内依次变向励磁, 驱动电路设计上需要八个电子开关进行顺序切换。

单极性电机每相上有两个极性相反的绕组线圈, 电机连续旋转时只要交替对同一相上的两个绕组线圈进行通电励磁。驱动电路设计上只需要四个电子开关。在双极性驱动模式下, 因为每相的绕组线圈为100%励磁, 所以双极性驱动模式下电机的输出力矩比单极性驱动模式下提高了约40%。
图片 图片

图片
图片
图片
电机的选型步骤
                     
                        
电机选型需要的基本内容有:所驱动的负载类型、额定功率、额定电压、额定转速、其他条件。

负载类型


  • 直流电机
  • 异步电机
  • 同步电动机

     


负载平稳,对起、制动无特殊要求的连续运行的生产机械,宜优先选用普通鼠笼型异步电动机,其广泛用于机械、水泵、风机等。
图片

起动、制动比较频繁,要求有较大的起动、制动转矩的生产机械,如桥式起重机、矿井提升机、空气压缩机、不可逆轧钢机等,应采用绕线式异步电动机。
无调速要求,需要转速恒定或要求改善功率因数的场合,应采用同步电动机,例如中、大容量的水泵,空气压缩机、提升机、磨机等。

调速范围要求在1∶3以上,且需连续稳定平滑调速的生产机械,宜采用他励直流电动机或用变频调速的鼠笼式异步电动机或同步电机,例如大型精密机床、龙门刨床、轧钢机、提升机等。

要求起动转距大,机械特性软的生产机械,使用串励或复励直流电动机,例如电车、电机车、重型起重机等。

一般来说,提供了驱动的负载类型、电机的额定功率、额定电压、额定转速便可以将电机大致确定下来。但如果要最优化地满足负载要求,这些基本参数就远远不够了。还需要提供的参数包括:频率,工作制,过载要求,绝缘等级,防护等级,转动惯量,负载阻力矩曲线,安装方式,环境温度,海拔高度,户外要求等,根据具体情况提供。




电机故障处理 经验总结
                     
                        
电动机运行或故障时,可通过看、听、闻、摸四种方法来及时预防和排除故障,保证电动机的安全运行。

  一、看   
观察电动机运行过程中有无异常,其主要表现为以下几种情况。
1.定子绕组短路时,可能会看到电动机冒烟。
2.电动机严重过载或缺相运行时,转速会变慢且有较沉重的"嗡嗡"声。
3.电动机维修网正常运行,但突然停止时,会看到接线松脱处冒火花;保险丝熔断或某部件被卡住等现象。
4.若电动机剧烈振动,则可能是传动装置被卡住或电动机固定不良、底脚螺栓松动等。
5.若电动机内接触点和连接处有变色、烧痕和烟迹等,则说明可能有局部过热、导体连接处接触不良或绕组烧毁等。

  二、听   
电动机正常运行时应发出均匀且较轻的"嗡嗡"声,无杂音和特别的声音。若发出噪声太大,包括电磁噪声、轴承杂音、通风噪声、机械摩擦声等,均可能是故障先兆或故障现象。
1. 对于电磁噪声,如果电动机发出忽高忽低且沉重的声音,则原因可能有以下几种:
(1)定子与转子间气隙不均匀,此时声音忽高忽低且高低音间隔时间不变,这是轴承磨损从而使定子与转子不同心所致。
(2)三相电流不平衡。这是三相绕组存在误接地、短路或接触不良等原因,若声音很沉闷则说明电动机严重过载或缺相运行。
(3)铁芯松动。电动机在运行中因振动而使铁芯固定螺栓松动造成铁芯硅钢片松动,发出噪声。
2.对于轴承杂音,应在电动机运行中经常监听。监听方法是:将螺丝刀一端顶住轴承安装部位,另一端贴近耳朵,便可听到轴承运转声。若轴承运转正常,其声音为连续而细小的"沙沙"声,不会有忽高忽低的变化及金属摩擦声。

若出现以下几种声音则为不正常现象: 
(1)轴承运转时有"吱吱"声,这是金属摩擦声,一般为轴承缺油所致,应拆开轴承加注适量润滑脂。
(2)若出现"唧哩"声,这是滚珠转动时发出的声音,一般为润滑脂干涸或缺油引起,可加注适量油脂。
(3)若出现"喀喀"声或"嘎吱"声,则为轴承内滚珠不规则运动而产生的声音,这是轴承内滚珠损坏或电动机长期不用,润滑脂干涸所致。
3.若传动机构和被传动机构发出连续而非忽高忽低的声音,可分以下几种情况处理。
(1)周期性"啪啪"声,为皮带接头不平滑引起。
(2)周期性"咚咚"声,为联轴器或皮带轮与轴间松动以及键或键槽磨损引起。
(3)不均匀的碰撞声,为风叶碰撞风扇罩引起。

  三、闻    
通过闻电动机的气味也能判断及预防故障。打开接线盒用鼻子嗅。看是否有焦糊味,若发现有特殊的油漆味,说明电动机内部温度过高;若发现有很重的糊味或焦臭味,则可能是绝缘层维修网被击穿或绕组已烧毁。如果没有味道,还需要用兆欧表测其绕组与外壳之间的绝缘阻值低于0.5兆,得进行烘干处理。阻值为零,说明已经损坏。

  四、摸    
摸电动机一些部位的温度也可判断故障原因。为确保安全,用手摸时应用手背去碰触电动机外壳、轴承周围部分,若发现温度异常,其原因可能有以下几种。
1.通风不良。如风扇脱落、通风道堵塞等。
2.过载。致使电流过大而使定子绕组过热。
3.定子绕组匝间短路或三相电流不平衡。
4.频繁启动或制动。
5.若轴承周围温度过高,则可能是轴承损坏或缺油所致。
电机轴承温度规定、出现异常的原因及处理
规程规定,滚动轴承最高温度不超过95℃,滑动轴承最高温度不超过80℃。并且温升不超过55℃(温升为轴承温度减去测试时的环境温度);
具体见HG25103-91 轴承温升过高的原因及处理:
(1)原因:轴弯曲,中心线不准。
处理;重新找中心。
(2)原因:基础螺丝松动。
处理:拧紧基础螺丝。
(3)原因:润滑油不干净。
处理:更换润滑油。
(4)原因:润滑油使用时间过长,未更换。
处理:洗净轴承,更换润滑油。
(5)原因:轴承中滚珠或滚柱损坏。
处理:更换新轴承。



相关推荐:

1、GB5226.1-2008 机械电气安全

2、GB19517-2009国家电气设备安全技术规范


全部回复(3 )

只看楼主 我来说两句
加载更多
这个家伙什么也没有留下。。。

电气工程原创版块

返回版块

2.2 万条内容 · 580 人订阅

猜你喜欢

阅读下一篇

基于电压型磁链观测器的异步电机矢量控制学习

知识点:电压型磁链观测器 一、引言 磁链估计是高性能交流感应电机调速系统中的重要组成部分。而磁链在实际应用中一般不用传感器直接检测,所以现代交流电力传动控制系统常用磁链估计模型来估算磁链。在电机运行过程中,要考虑磁饱和、温度等干扰信号对电机参数造成偏差的影响,所以如何在电机全速范围内获得准确的磁链即提高磁链观测器的参数鲁棒性成为众多学者的研究内容。 转子磁链观测器利用定子电压、定子电流或转子转速信号观测出转子磁链的相位和幅值。如果转子磁链的相位观测不准,那么定子电流的励磁分量与转矩分量就不能实现完全的解耦,可能会造成系统的振荡甚至不稳定。如果观测出转子磁链的幅值偏大,会使得电机运行在弱磁状态,减小电机的带载能力;如果观测出转子磁链的幅值偏小,会导致过大的励磁电流,使电机的铁心饱和,严重时还会导致绕组过热而烧坏电机。因此决定整个矢量控制系统性能优劣的最为关键环节就是转子磁链观测器。

回帖成功

经验值 +10