前在我国防雷产品市场上销售的各式各样的洋避雷针在功能上并不比普通避雷针有任何优点,相反与普通避雷针一样,具有引雷导致强烈电磁幅射干扰的缺点。这些洋避雷针及其所起草的技术标准为国际学术界完全拒绝。
1、 前言
近二十年来,在我国的防雷产品市场上,充斥着大量的洋避雷针。从上世纪早期的放射源避雷针,到八十年代的法国依丽达(Helita)公司的Pulsar大气高脉冲电压避雷针(Atmospheric high pulse voltage lightning conductor),到九十年代的富兰克林避雷针(Franklin conductor)、圣埃尔摩避雷针(Saint Elmo lightning conductor),到现在的各种型号的提前放电避雷针,如拓海通用(TOHI)的易敌雷(Indelec)(E.S.E)主动式提前放电避雷针,杜尔—梅森的卫星(Satelit)提前放电避雷针,最近又有一家西班牙Ingesco公司的PDC系列主动式早期放电避雷针,等等。我国一下子成为法国,还有西班牙,也可能还有别的什么国家的洋避雷针的大展台和大市场。这些五花八门的洋避雷针,虽然结构和外形各式各样,但奇怪的是其厂家都热衷于声称自已的洋避雷针具有“提前放电”,或“主动式放电”,或“早期放电”的优越性能,它们都满足法国的国家防雷标准NF C 17-102,也都具有完全相同的保护半径计算公式。
可是,究竟这些洋避雷针是些什么货色呢?它真的如其宣传所说,比普通避雷针有很大的优点吗?在我们仔细研究了它们提供的宣传资料之后,就可发现,原来它们的作用,与一根普通金属避雷针并没有什么两样!
2、 普通避雷针的防雷性能和缺点
避雷针是Franklin于1753年发明的。它就是一根简单的安装在高层建筑物上的金属针,称为接闪器,再加上引下线和接地极,就成为一套完整的防护直击雷的装置。200多年来避雷针有效地保护了各种建筑物和工业设施,减少了雷害事故的发生和伤害事故,为人类作出了巨大的贡献。
避雷针的防雷原理就在于它能接闪雷电流,并顺利地将其引导进入大地,而保护它下面的或它周围的建筑物不受雷击。避雷针泄放雷电流时,在其周围将产生强烈的电磁幅射干扰。在以前,或者说对于普通的建筑物,机器,或人类,这种电磁幅射不会带来显著的危害。因此人们以前对它的这个缺点也不在意。
可是到了现代社会的今天,计算机和其它精密仪器设备在各行各业的大量应用,情况就不同了。在这些精密仪器设备中,存在大量的微电子器件,特别是计算机芯片。在这些芯片中,集成着大量的微小的电子元件,它们很小,它们之间的绝缘也十分微弱。它们工作在几伏的低电压下。避雷针引导雷电流产生的强烈电磁幅射将在这些电子器件的回路中感应生成过电压,这种过电压将有极大的可能性击穿集成电路芯片中元件之间的绝缘,摧毁这些芯片,造成对这些精密仪器设备的不可弥补的损坏。因此,到了现代社会的今天,避雷针的这个缺点就突现出来并越来越为人们所重视。
3、 洋避雷针与普通避雷针的比较
洋避雷针与普通避雷针一样,要接闪,要引雷。那在引雷之后,在雷电流来临时,它还是不可避免地会产生强烈的电磁幅射干扰。照样要危及计算机等各种精密弱电设备的安全。在这一点上,它们具有与普通避雷针一样的缺点,而不会比普通避雷针有任何优点。
4、 洋避雷针的“提前放电”是怎么一回事
洋避雷针的制造人声称,它们的洋避雷针的优点主要有两个,一是它可以“主动放电”,或“提前放电”,或“早期放电”。即是说,他们的洋避雷针比普通避雷针具有更好的引雷性能。二是将它的提前放电时间换算成提前放电距离后,相当于增加了避雷针的高度,从而可以增大保护半径。
那就让我们以“易敌雷”防雷器为例从原理、试验室试验和大气观测三方面来分析其厂家提供的《易敌雷(INDELEC) 产品设计原理》(以下简称《设计原理》)中的问题,看看它是怎样欺骗用户的。
4.1关于吸收和储存大气电场能量
《设计原理》第3.3.3节“易敌雷研究的理论基础及原理描述”中这样写道:
“当风暴降临时,装置通过底部电极吸收大气电场中能量并储存于其内部的电子线路,当电荷充电到一定程度时,通过其上部电极放电,在其尖端周围形成强的云层电荷相反的离子层。……易敌雷的这种强的电离放电产生向上的发射的提前先导……。”
需要指出,大气静电场的能量密度是很低的。例如,在雷击即将发生前的电场强度40kV/m时,空间大气电场的能量密度仅为4′10-9焦尔/cm3。我们知道,一个金属物体放入静电场中时,将使原有的电场畸变。并且,由于金属的导电性和表面的等位性,在金属体内的电场强度恒等于零。要想借助“易敌雷”的底部电极,在被动的没有外力做功的条件下,吸收大气静电场的能量并将其储存起来,积累到所需要的数量,并不断地利用这个能量产生火花放电,从原理上说,是不成立的,不可能的。如果我们能设计出一种机械,或一种电子线路,在外力不做功的条件下,吸收静电场能量并将其浓缩和储存起来,用于实际,那无异于制造了一台永动机。致于要借助这个储存的能量,产生向上先导,更是无稽之谈。
《设计原理》还说:
“当其电子装置中的充电电场梯度,即dv(电场变化量)/dt(时间间隔)达到某一定比率时,电离放电并形成向上先导,……‘引雷’是有条件的,在dv/dt达到某个确定比例才发生,此时的电场强度达到400-500kV/m。”
在这里,《设计原理》将dv/dt说成是电场梯度,这是概念上的或本质上的错误。dv/dt不是电场梯度,而是电压随时间的变化率,它不是能量,不能“充电”入某个电子装置。
《设计原理》说的引雷时的条件是“电场强度达到400—500kV/m”。试问,是哪里的电场达到这个值?需要指出,空间电场强度远未达到这个数值之前,雷电放电就形成了。“易敌雷”要等到这个电场强度到达时再动作,能行吗?《设计原理》缺乏起码的大气放电知识。
4.2关于抡先时间的试验
《设计原理》定义的“启动抡先时间DT”为:
DT=TSR-TESE
TSR与TESE 分别为普通避雷针和“易敌雷”防雷器的“上行先导电荷连续传播的平均时间”。在这里,《设计原理》所要说的是“易敌雷”防雷器比普通避雷针的“上行先导电荷连续传播的平均时间”短,这个短的时间差就是所谓的“抡先时间”。
这里《设计原理》所用的术语多么别扭,不仅一般的用户看不懂,就是专业人员也感到纳闷和新奇。直到阅读了它的全部试验资料才知,其实,所谓“上行先导电荷连续传播时间”, 用专业术语说,就是冲击放电的击穿时间(time to breakdown)。
本文来自http://www.bileizhen.com/pdf/biz_mei.htm
全部回复(10 )
只看楼主 我来说两句回复 举报
回复 举报