[1] 方志, 周建超, 谭星宇. 基于高性能材料的超大跨混合梁斜拉桥结构性能研究[J]. 桥梁建设, 2021, 51(6):76-84.
[2] 袁帅华, 段文强, 周聪, 等. 波形钢腹板部分斜拉桥施工阶段剪力滞效应分析[J]. 中南大学学报:自然科学版, 2021, 52(11): 4055?4062.
[3] 蔡俊镱. 淡江大桥主桥设计[J]. 世界桥梁, 2021, 51(2):105-110.
[4] 胡可, 王胜斌, 王波,等. 超大跨径柱式塔斜拉桥结构创新与应用[J]. 桥梁建设, 2021, 51(4):8.
[5] 潘子超, 方许锐, 胡晓红,等. 超高墩对山区三塔斜拉桥力学响应的影响[J]. 同济大学学报(自然科学版), 2020, 48(6):976-802.
[6] 杨钻, 王雷, 王景奇. 牛田洋大桥主桥结构设计[J]. 桥梁建设, 2021, 51(6):1-8.
[7] 祝嘉翀, 黄天立, 周朝阳, 等. 高铁大跨拱承式独塔斜拉桥成桥状态力学参数敏感性分析[J]. 铁道科学与工程学报, 2021, 18(9):2244-2254.
[8] 侯满, 张志强, 范振伟. 三亚海棠湾人行景观斜拉桥总体设计[J]. 世界桥梁, 2021, 49(3):1-6.
[9] Kazuhiro Miyachi, Shunichi Nakamura. Cable-Stayed Bridge with S-Curved Girder: Shake Hands Bridge, Structural Engineering International, 2021, 31(4): 504-515.
[10] 鲜荣, 徐源庆, 刘得运, 等. 黄茅海超大跨三塔斜拉桥结构体系研究[J]. 桥梁建设, 2021, 51(6):9-15.
[11] 熊治华, 张爱军, 刘玉擎. 大跨径槽桥合建结构体系与荷载效应研究[J]. 中国水利水电科学研究院学报, 2021, 19(4):389-399.
[12] 孟杰, 陈晓虎, 邓宇, 等. 重庆土湾大桥主桥方案设计[J]. 桥梁建设 2021, 51(5):101-108.
[13] 柴生波, 张瑞琳, 王秀兰. 交叉索布置方式对多塔斜拉桥力学性能的影响[J]. 科学技术与工程, 2021, 21(30):13131-13138.
[14] 王东绪, 霍学晋, 唐贺强,等. 大跨度双链式悬索桥受力特性影响因素研究[J]. 世界桥梁, 2021, 49(1):65-70.
[15] 贺耀北, 邵旭东, 张欣, 等. 钢-UHPC组合梁自锚式悬索桥力学性能与经济性分析[J]. 桥梁建设, 2021, 51(1):51-57.
[16] 袁吉汗. 超大跨径混合空间缆索悬索桥的力学性能分析[D]. 南京:东南大学, 2021.
[17] 常付平, 陈亮, 邵长宇, 等. 济南凤凰黄河大桥主桥设计[J]. 桥梁建设, 2021, 51(5):101-107.
[18] Zhuang D, Xiao R, Sun B, et al. Concept and Preliminary Static Analysis of Hybrid Anchored Suspension Bridge[J]. Journal of Bridge Engineering, 2021, 26(6):04021032.
[19] 张云龙, 王秀兰, 柴生波. 双缆多塔悬索桥塔梁受力特性研究[J]. 广西大学学报:自然科学版, 2021, 46(5):1178-1187.
[20] 王秀兰, 张云龙, 柴生波, 等. 双缆多塔悬索桥主缆垂跨比的合理取值[J]. 公路交通科技, 2021, 38(7):51-59.
[21] 王路, 侯康, 沈锐利, 等. 三塔以上悬索桥关键力学行为及结构成立特征[J]. 东南大学学报:自然科学版, 2021, 51(3):392-397.
[22] Yunki Son, Changsun Lee, Dongho Yoo, et al. CheonSa Bridge — The First Sea Crossing Multi-Span Suspension Bridge, Structural Engineering International, 2021, 31(3):431-434.
[23] 罗凌峰, 单德山, 陈奉民, 等. 销接式索夹悬索桥成桥线形的高精度计算方法[J]. 工程力学, 2021, 38(8):133-144.
[24] Qi D, Chen X, Zhu Y, et al. A New Type of Wind-Resistance Cable Net for Narrow Suspension Bridges and Wind-Resistance Cable Element for Its Calculation[J]. Structures, 2021, 33(1):4243-4255.
[25] Li T, Liu Z. An Improved Continuum Model for Determining the Behavior of Suspension Bridges During Construction[J]. Automation in Construction, 2021, 127:103715.
[26] Zhou Y, Xia Y, Chen B, et al. Analytical Solution to Temperature-Induced Deformation of Suspension Bridges[J]. Mechanical systems and signal processing, 2020, 139(5):106568.1-106568.17.
[27] Xw A, Hw A, Ji Z B, et al. Form-Finding Method for The Target Configuration Under Dead Load of a New Type of Spatial Self-Anchored Hybrid Cable-Stayed Suspension Bridges[J]. Engineering Structures, 2021, 227(1):111407.
[28] Zhang W M, Yang C Y, Chang J Q, et al. Gravity Stiffness of a Three-Tower Suspension Bridge: Analytical Solution Via Double-Span Bridge Reduction to A Single-Span One with Elastic Constraints[J]. Structures, 2021, 33(10):2198-2207.
[29] Zhang W M, Lu X F, Wang Z, et al. Effect of the main cable bending stiffness on flexural and torsional vibrations of suspension bridges: Analytical approach[J]. Engineering Structures, 2021, 240(6):112393.
[30] Zhang W M, Yang C Y, Chang J Q. Cable Shape and Construction Parameters of Triple-Tower Double-Cable Suspension Bridge with Two Asymmetrical Main Spans[J]. Journal of Bridge Engineering, 2021, 26(2):04020127.
[31] Zhang W M, Liu Z H, Liu Z. Aesthetics and Torsional Rigidity Improvements of a Triple Cable Suspension Bridge by Uniform Distribution of Dead Loads to Three Cables in the Transverse Direction[J]. Journal of Bridge Engineering, 2021, 26(11): 04021083.
[32] Cao H Y, Chen Y P, Li J, et al. Static characteristics analysis of three-tower suspension bridges with central buckle using a simplified model. Engineering Structures, 2021, 245(10):112916.
[33] Gui C, Lei J, Lin W, et al. Static Performance and Elastic Buckling Analysis of Stiffened Plates with Flat Flanges[J]. International Journal of Steel Structures, 2021, 21(5):1588-1604.
[34] Wang F, Lv Z D, Gu M J, et al. Experimental Study on Stability of Orthotropic Steel Box Girder of Self-Anchored Suspension Cable-Stayed Bridge[J]. Thin-Walled Structures, 2021, 163:107727.
[35] Wang F, Tian L J, Lv Z D, et al. Stability of full-scale orthotropic steel plates under axial and biased loading: Experimental and numerical studies[J]. Journal of Constructional Steel Research, 2021, 181(122):106613.
[36] 王飞, 申磊, 赵卓, 等.轴心受压U形加劲板在弹性约束下的稳定承载力计算分析[J].建筑钢结构进展,2021,23(12):56-64.
[37] Bai L H, Shen R L, Yan Q S, et al. Progressive-models method for evaluating interactive stability of steel box girders for bridges – Extension of progressive collapse method in ship structures[J]. Structures, 2021, 33(10):3848-3861.
[38] 赵秋, 陈鹏, 林楚,等. 受压T肋被加劲板局部稳定试验与计算方法[J]. 铁道建筑, 2021, 61(8):23-30.
[39] 赵秋, 陈鹏, 林楚, 等. 受压T肋加劲板翼缘局部稳定试验与计算方法[J]. 土木与环境工程学报(中英文)
[40] 张雅俊, 林立华, 刘玉擎. Q420钢U肋加劲板轴压承载性能试验研究[J]. 同济大学学报(自然科学版), 2021, 49(12):1754-1760.
[41] 刘小林. 连跨悬索桥中间钢塔双重非线性极限承载力研究[J]. 交通科技. 2021, 4:21-24.
[42] 孙立军, 王琦, 张玉奇. 自锚式悬索桥钢塔塔吊附墙设计与局部受力分析[J]. 公路, 2021, 01:171-174.
[43] 易岳林, 陈政, 王雨阳,等. 超大跨径组合梁斜拉桥稳定和极限承载力研究[J]. 结构工程师, 2021, 37(4):40-47.
[44] 蔡军, 安永日, 李小斌. 面外弯曲加劲板结构受力特性探究[J]. 中国公路, 2021, 15:86-89.
[45] Ljubinkovic F, Martins J P, Gervasio H, et al. Experimental behavior of curved bottom flanges in steel box-girder bridge decks[J]. Journal of Constructional Steel Research, 2019, 160(9):169–188.
[46] Staen G V, Fang H, Bogaert P V, et al. Ultimate Shear Load Capacity of Cross-sectional Curved Steel Webs[J]. Structural Engineering International, 2021(8):1-12.
[47] 易伦雄, 袁毅, 彭最. 690MPa级高性能桥梁钢工程应用[J]. 桥梁建设, 2021, 51(5):14-19.
[48] 黄侨, 黄义理, 郑清刚, 等.常泰长江大桥塔柱偏心距增大系数的计算方法[J].长安大学学报(自然科学版), 2021, 41(3):42-51.
[49] 苑仁安, 傅战工, 郑清刚, 等. 超高桥塔结构偏心距增大系数计算方法[J]. 桥梁建设, 2021, 51(5):37-43.
[50] Aarne J, Esko J, Tung T Q. Balance and Costs of Cable-Stayed Bridges with Inclined and Curved Tower Shapes[J], Structural Engineering International, 2021, 31(4):498-503.
[51] Lu W, Shen R, Zhang S, et al. Strand element analysis method for interaction between cable and saddle in suspension bridges[J]. Engineering Structures, 2021, 242(4):112283.
[52] 朱辉龙. 大跨度悬索桥主缆力学行为及滑移特性研究[D]. 徐州:中国矿业大学, 2021.
[53] Zhong C J, Shen R L, Wang H, et al. Research on ultimate bearing capacity state and structure optimization of main cable saddle[J]. Structures, 2021, 33:28-40.
[54] 钟昌均, 王忠彬, 柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6):2068-2078.
[55] 刘斌, 马健, 刘昆珏, 等. 悬索桥新型复合索鞍设计[J]. 桥梁建设, 2021, 51(2):124-129.
[56] Miao R S, Shen R L, Wang L, et al. Theoretical and numerical studies of the slip resistance of main cable clamp composed of an upper and a lower part[J]. Advances in Structural Engineering, 2021, 24(4):691-705
[57] Miao R S, Shen R L, Tang F L, et al. Nonlinear interaction effect on main cable clamp bolts tightening in suspension bridge[J]. Journal of Constructional Steel Research,2021, 182:106663.
[58] 邱文亮, 吴广润. 悬索桥吊索断裂动力响应分析的有限元模拟方法研究[J]. 湖南大学学报:自然科学版, 2021, 48(11):22-30.
[59] 李文武, 周洋, 陈鹏飞,等. 自锚式悬索桥损伤吊索系统拉力重分布研究[J]. 铁道科学与工程学报, 2021, 18(1):145-152.
[60] 王鹏, 唐清华, 闫海青,等. 空间缆索悬索桥吊索断裂时的强健性分析[J]. 公路交通科技, 2021, 38(4):71-75.
[61] 张羽, 方志, 卢江波,等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40(5):237-246.
[62] Jumari R, Adrian B, Raimondo B. Experimental Investigation of the High-Temperature Performance of High-Strength Steel Suspension Bridge Wire[J]. Journal of Bridge Engineering, 2021, 26(7):04021034.
[63] Chen W, Shen R. Study of Temperature Field Inhomogeneities in Parallel Wire Strand Sections under ISO834 Fire[J]. KSCE Journal of Civil Engineering, 2021, 25(10):3940-3952.
[64] Zhi Liu, Julio Cesar G. Silva, Qiao Huang et al. Coupled CFD–FEM Simulation Methodology for Fire-Exposed Bridges[J]. Journal of Bridge Engineering, 2021, 26(10): 04021074.
全部回复(2 )
只看楼主 我来说两句抢地板很不错的资料,学习了
回复 举报
感谢,学习一下。
回复 举报