土木在线论坛 \ 道路桥梁 \ 铁路工程 \ 对磁悬浮高速列车技术认识的错误观点

对磁悬浮高速列车技术认识的错误观点

发布于:2015-06-15 22:33:15 来自:道路桥梁/铁路工程 [复制转发]
1  地面高速交通速度并不是越高越好
磁浮列车受到关注的主要原因是它的高速度, 但是,人们往往忽视了以下2 点:高速度并非磁浮列车的特长;对地面交通而言过高的速度并非有利。
磁浮列车的功能分悬浮、导向和牵引。后者靠线性电机来实现,是决定速度的关键。而线性电机牵引既可用于磁浮,也可用于轮轨列车。采用线性电机牵引的地铁轮轨列车早已实现,东京一条这样的地铁线已经商业运营了好多年,中国广州地铁准备采用。所以,磁浮列车的特点就是磁悬浮,不是它的牵引高速度。
至于磁浮列车靠线性电机牵引所能实现的400 ~600 km/ h 高速度能够说明它的先进性吗? 很遗憾,答案 也是否定的。任何交通工具都在某种介质中运行,要得到前进速度都需要消耗能量来克服来自周围介质的阻力。地面高速交通系统处在地表稠密大气层的包围之中,其高速运行的关键是克服强大的气动阻力和气动噪音。气动阻力与速度平方成比例,牵引功率等于力乘以速度,故能耗与速度3 次方成比例,噪音则正比于速度的5~8 次方。这一客观规律对所有地面运输系统来说概莫能外。
向磁阻所产生的阻力和用于从轨道向车内供电的直线发电机所产生的阻力。前者几乎是常数,其单位列车质量的能耗按德国的实测数据为117 kW/ t 。轮轨列车低速下的主要阻力为轮对滚动和机械阻力,分常阻力和随速度线性变化的阻力两部分。
然而,随着速度的提高,空气阻力在总阻力中所占比重迅速上升。根据日本新干线列车和德国TR06 磁浮列车的实测及在实测基础上的推算,当速度为200 、300 、400 、500 km/ h 时,轮轨和磁浮列车空气阻力占比重分别为67 % 、80 % 、87 % 、92 % 和53 % 、72 % 、83 % 、92 % , 所以在地表稠密大气层里以300 km/ h 以上运行的高速列车,不管是轮轨还是磁浮,70 % 以上的阻力均来自大气,需要的牵引功率更加突出,气动噪音更是如此。当然,人们可以任意加大牵引电机的功率来达到超高速,但这对于轮轨与磁浮的比较来说,只在百分之几上面做文章,已经没有什么意义了。
对于轮轨与磁浮高速列车的一个共同问题是: 在地表稠密大气层中运行,值不值得去追求过高的速度,比如超过400 km/ h 。不妨先看一下其他运输领域的情况。
例如航空。现代客机可以升空10 000 m , 该处空气密度仅及地表的1/ 5 , 所以适航速度可达1 000 km/ h 。以前只能爬高5 000~6 000 m , 设计速度只定为500~ 600 km/ h 。直升飞机航高3 000 m 左右,故航速亦在300 km/ h 附近。协和式客机想打破常规,升高到15 000 m , 航速超过1 500 km/ h , 号称由巴黎飞纽约3 h 到达,结果油耗过大,票价过高,无法商业运营,不得不宣告停飞。
再看水运。船舶自浮于水面,悬浮能耗为零,故水运成本最低。但水中阻力比空气阻力大许多倍, 船舶只能以低速航行。最快的游艇也不超过90 km/ h 。人们曾研究高速水运,唯一可能就是脱离水介质,采用水面效应飞机,离水面3~4 m 飞行,速度可达300~ 400 km/ h 。为什么不提高到500~ 600 km/ h 因为仍在地表稠密大气层里,去克服过大的空气阻力是不经济的。
十分明显,在地表稠密大气层里运行的高速列车,不管是否悬浮,都有一个最高经济速度,其值应在300~400 km/ h 之间。高于400 km/ h , 在能耗和噪音指标上都是不经济的。由上述空气阻力所占比例来看,磁浮列车在400 km/ h 以下均低于轮轨,亦即其他阻力均高于轮轨,而超过400 km/ h 在总体上更是不经济。这就是国际上磁浮列车经过几十年的研制仍无法进入运输市场的缘故。浦东磁浮车达到430 km/ h 时,车内噪音为84 dB , 车外噪音为90 dB 以上,严重超标,这就是稠密大气在起作用。德国当初选定比较落后的常导技术,最高速度目标值定为280 km/ h , 想尽早投入运用,与轮轨高速争高低。实在无望时,才将速度提高到400 km/ h 以上, 希望在速度上拥有优势,但是,这样也无法掩盖德国磁浮技术的落后性。
2  德国常导磁浮高速列车技术落后性
德国常导磁浮列车利用磁场吸力实现悬浮,间隙越小,吸力越大,本质上是一个不稳定系统,全靠自动控制技术保持其8~10 mm 的悬浮间隙。众所周知,任何控制都有调节时间,不可能100 % 地实时调节,速度不高时还可以实现,速度越高留给调节的时间越短,对控制系统的要求就越高。德国西门子公司能够使速度提高到430 km/ h , 就控制技术来说,的确达到了世界先进水平,但却是以线路的极高精度为前提的。如浦东磁浮线的土建部分由中方承担,要求由德方提出,十分苛刻,不得不采用磨削等机械加工方法来生产钢筋混凝土构件。中国工程师发挥难以置信的智慧和努力,以最短时间完成了最高质量的土建工程。很可惜这种对土建构件的过分要求在技术经济上是不合理的,是德国落后的磁浮技术所带来的结果。
日本超导磁浮技术利用磁场斥力实现悬浮,间隙越小时,斥力越大,自动将间隙加大,直到达到平衡,所以,从本质上说,是一个自适应、自稳定系统,毋须任何人为控制。由于采用超导技术,磁场强大, 能悬浮100 mm , 对土建结构没有特殊要求,即使发生轻微地震,磁浮列车可以照常运行。其试验速度已达580 km/h , 会车试验已达1 000 km/ h , 这3 项指标都是世界最高记录,从悬浮原理和技术水平来说均超过德国。即使如此,日本仍不敢轻言工程化, 仍在继续研究,核心是降低成本和提高可靠性,非如此无法进入运输市场。
任何先进技术,只有在构成先进系统后才是先进的。浦东磁浮的控制系统和高精度的土建施工技术诚然达到了国际领先水平,但构成的德国磁浮技术却是落后的。自动控制技术再高明,相对于毋需控制的自稳定系统而言就是落后的。土建工程在运输系统中属固定设备,占用90 % 以上的投资。车辆属移动设备,对其最基本的要求是适应固定设备,尽可能放宽对后者的要求,以达到降低总成本的目的。德国磁浮技术反其道而行之,不可思义地把机械精度强加于土建结构,必然极大地提高建设成本,明显表现出它的落后性。
判断任何一项技术是否先进的唯一检验是市场。德国从20 世纪90 年代初开始就筹建柏林汉堡292 km 商业磁浮运营线,90 亿马克的建设资金业已到位,即将开工修建,但是经过市场预测,每年要亏损3 亿马克,于是在2000 年3 月毅然宣布放弃这项计划,还没有进入运输市场就被市场所抛弃。这一悲剧结果是对德国磁浮技术落后性的有力说明。前已提到,德国选择落后的常导技术是一种短期行为,缺乏长期战略考虑。常导技术对控制要求高,不便运用;对土建工程要求严,极大提高建设成本;速度并不高,试验最高速度仅为450 km/ h , 他们说浦东线按505 km/ h 设计,只是纸上谈兵。由于磁浮列车有一半在线路上,一经选定就不能改型。明知将速度由280 km/ h 提高到430 km/ h 对常导磁浮来说太困难了,但也只好勉为其难。德国的这一教训千万不能当作经验来吸取。
磁浮列车作为一种运输新技术加以研究是应该的,高速磁浮在某种特定条件下也是需要的。但认为德国技术最好,一心搞德国技术国产化是很危险的,后患无穷。鉴于这种危险的确存在,本文大声疾呼,为子孙后代着想,千万不要走上德国常导高速磁浮之路。
您已经是筑龙网VIP会员,资料购买以后在VIP会员有效期内都可以进入“我的资料馆”免费下载,不会重复扣币。
  • lrg005
    lrg005 沙发
    谢谢楼主,好资料,学习了
    2015-11-24 08:42:24

    回复 举报
    赞同0
这个家伙什么也没有留下。。。

铁路工程

返回版块

6.76 万条内容 · 121 人订阅

猜你喜欢

阅读下一篇

北京地铁5 号线蒲天施工阶段计算与分析

1  工程概况蒲天区间南起蒲黄榆北端,沿蒲黄榆路向北,经玉蜓立交桥穿过南二环路、京广铁路、南护城河,终至天坛东门站。该区段线路长1744. 4m , 区间隧道覆土厚度为14~18m , 为两个单洞单线区间。根据蒲天区间所处位置的工程地质及水文地质条件、周围环境、地面及地下构筑物、道路、地下管线等条件,本区间采用浅埋暗挖法施工,采用有限元结构分析程序ANSYS 软件对区间主体结构施工全过程进行模拟计算,并采用地下结构专用程序2D -σ软件对计算结果进行了比较。地铁5 号线由南向北横穿永定河冲洪积扇,本区间位于该冲洪积扇的中部地带。场址的土层依次为: 人工堆积层:粉土填土① 层,局部为杂填土①1 层及炉灰①2 层。第四纪全新冲洪积层:粉土③ 层(夹粉质粘土、粘土③1 层), 粉细纱③2 层,粉土④1 层,中粗砂④3 层。第四纪晚更新世冲洪积层:卵石圆砾⑤ 层,粉细纱⑤2 层,粉质粘土、粘土⑥ 层,细中砂⑥2 层,卵石圆砾⑦ 层,粉质粘土、粘土⑧ 层(夹粉土⑧1 层及细中砂⑧2 层),卵石圆砾⑨ 层(夹细中砂⑨1 层),粘土⑨3 层,粉质粘土、粘土⑩ 层,细中砂⑩2 层,卵石圆砾层(夹细中砂 1 层) 。

回帖成功

经验值 +10