土木在线论坛 \ 建筑结构 \ 钢结构工程 \ 【解构】最新钢结构性能设计的设计全流程及案例分享(下篇)

【解构】最新钢结构性能设计的设计全流程及案例分享(下篇)

发布于:2018-11-27 14:48:27 来自:建筑结构/钢结构工程 [复制转发]

文章作者:刘孝国 褚凤根

来源:PKPM构力科技(id:PKPM-systems)


本文将结合新钢标要求,对性能设计的流程进行全面梳理,帮助大家在PKPM软件辅助下掌握如何更加便捷的进行钢结构性能设计。


上篇:最新钢结构性能设计的设计全流程及案例分享(上篇)



2.5 确定构件的宽厚比等级


根据结构的抗震设防类别及确定的性能等级,确定出对应结构构件的延性等级,按照钢标17.3.4确定对应的板件宽厚比等级,并在SATWE软件中选择“梁、柱及支撑构件的宽厚比等级”,如图10所示。


2.6 小震模型与新钢标中震模型的计算及包络


对于按照性能设计的结构,SATWE程序在“多模型控制信息”下会自动形成如图16所示“小震模型”和“新钢标中震模型”两个模型,分别进行小震与中震下的内力分析与承载力计算,最终将包络结果展示在主模型中。查看主模型计算结果,可以看到在主模型下包络了小震与中震模型的强度应力比、稳定应力比、长细比、宽厚比、轴压比及实际性能系数等结果。软件输出的结果分别如图 17、图 18所示,如果各项指标有超限,在程序中会标红提示,如图19所示的塑性耗能梁实际性能系数小于指定的最小的性能系数,不满足要求程序显红。


微信图片_20181127144240.jpg


图16 多模型控制信息表


微信图片_20181127144244.jpg


图17 包络输出主模型下的强度、稳定应力比结果


微信图片_20181127144313.jpg


图18 主模型下包络的宽厚比、高厚比及限值


微信图片_20181127144316.jpg


图19 主模型下显示的塑性耗能构件实际性能系数


2.7 中震下构件承载力验算


对于按照性能设计的结构,SATWE程序对于自动形成的中震模型进行中震下地震作用分析,同时按照钢标进行相关的构件验算及对应的构造控制。


中震下构件承载力验算时承载力标准值应进行计入性能系数的内力组合效应验算,按照图20所示即新钢标17.2.3条公式进行验算。其中Ωi为钢结构构件的性能系数,注意:不是最小的性能系数,该系数需要考虑βe,Ωi=βe*Ωmin。


微信图片_20181127144319.png


图20 中震下构件承载力验算公式


对于梁、柱及支撑构件均按照新钢标的要求进行中震下承载力验算,同时按照指定的宽厚比等级及延性等级分别进行中震下构件的宽厚比、高厚比及长细比限值等构造措施的控制,同时图21展示了不同的板件宽厚比等级下对应钢构件梁、柱的宽厚比、高厚比限值。


微信图片_20181127144322.jpg


图21 不同板件宽厚比等级及限值控制


2.8 按照满足性能设计的要求进行构造控制


包络之后,如果中震下承载力也满足要求,可以按照性能设计的要求放宽对于构件宽厚比、高厚比及长细比的控制要求。可以在主模型下通过查看详细构件信息查看包络过程及构造控制放松的结果。


如图22所示为某柱构件按照性能设计之后主模型中详细构件输出的结果。如图23及图24分别为该柱构件小震与中震下计算的结果。


微信图片_20181127144325.jpg


图22 主模型下柱包络的强度、稳定应力比及构造限值结果


微信图片_20181127144328.jpg


图23 小震模型下该柱强度、稳定应力比及构造限值结果


微信图片_20181127144331.jpg


图24 中震模型下该柱强度、稳定应力比及构造限值结果


通过上述小震与中震的包络可以看到,SATWE程序已经完全按照新钢标对性能设计的要求,对于结构构件的强度应力比、稳定应力比进行了包络设计,在主模型中输出了最不利的结果;对于构造措施也进行了包络控制,在主模型的构件详细信息下面已经按照小震和中震模型进行了包络设计输出,对于中震下承载力满足要求,程序已经按照对应的指定的宽厚比等级控制构件的宽厚比限值,对于构件的长细比限值按照指定的延性等级及轴压比进行限值的控制。并且对于包络结果通过图形文件可以直接查看应力比及相关宽厚比、高厚比、长细比等构造措施,另外图面文件上可以直接查看塑性耗能构件实际的性能系数。


2.9 性能5,6,7的钢结构大震弹塑性变形验算


新钢标17.1.4第五条要求,当塑性耗能区的最低承载性能等级为性能5、性能6或性能7时,通过罕遇地震下结构的弹塑性分析或按构件工作状态形成新的结构等效弹性分析模型,进行竖向构件的弹塑性层间位移角验算,应满足现行国家标准《建筑抗震设计规范》GB50011的弹塑性层间位移角限值;当所有构造要求均满足结构构件延性等级为Ⅰ级的要求时,弹塑性层间位移角限值可增加25%。


按照上述新钢标的要求,对于5,6,7这几个性能目标下的钢结构在进行性能设计时需要补充进行大震下弹塑性分析的变形验算。结构在大震下弹塑性层间位移角需要满足如下图25所示抗规的限值要求。


微信图片_20181127144333.jpg


图25 抗规对各类结构弹塑性层间位移角限值要求


图26所示为一钢框架结构,使用SAUSAGE软件对其进行大震弹塑性分析。大震弹塑性分析要进行地震波的选择,按照抗规要求分别选择对应满足计算要求的地震波再进行弹塑性分析。计算完毕之后,可以直接查看其弹塑性层间位移角如图 27所示,在选定满足规范要求的地震波作用下,查看该钢框架结构能否满足大震不倒的弹塑性变形要求,在两个方向均需要满足大震弹塑性层间位移角限值要求。


微信图片_20181127144336.jpg


图26 大震弹塑性分析的钢框架三维图


微信图片_20181127144338.png


图27 该钢框架结构在某条地震波作用下X方向弹塑性层间位移角


通过大震弹塑性分析还可以进一步较为精细化的考察结构塑性铰开展情况及结构中梁柱构件的损伤情况,通过直观的SAUSAGE软件图形输出结果,可以查看到全楼及楼层的梁、柱损伤比例,分别如图28、图29所示。


微信图片_20181127144341.jpg


图28 该钢框架大震弹塑性分析全楼及分层梁损伤情况


微信图片_20181127144344.jpg


图 29该钢框架大震弹塑性分析全楼及分层柱损伤情况


3  .


钢框架工程性能设计案例


某框架结构三维模型图如图30所示,该框架结构三层,与地震相关的参数如图31所示。


微信图片_20181127144348.jpg


图30 钢框架三维模型图


微信图片_20181127144351.jpg


图31 该框架结构地震作用计算相关参数


3.1 按照抗规设计方法进行设计


由于该框架结构属于50m以下,六度区,按照抗规规范属于五级抗震等级,在设计中按照四级抗震等级控制相应的构造措施。小震计算完毕之后选取其中某根柱的强度及稳定应力比计算结果进行查看,如下图32所示。小震设计下计算的该柱的强度应力比、稳定应力比及在地震、风荷载下的变形均满足规范要求,但是长细比超限。该结构柱材料为Q345,四级抗震等级,按照抗规的长细比限值控制,对应的长细比限值为120*sqrt(235/345)=99.04,因此,对该柱截面X方向的长细比满足规范要求,Y向的长细比为147.27,超出了规范99.04的限值。


微信图片_20181127144355.jpg


图32 按照抗规设计,柱长细比超限


对于上述超限的柱,可以修改柱截面,让满足抗震规范的要求,也可以直接采用性能设计进行“低延性-高承载力”或者“高延性-低承载力计算”。根据工程实际情况放松相应的柱的构造措施。


3.2 按照新钢标进行性能设计参数选择。


该结构的高度小于50m,属于6度区的结构,按照新钢标表17.1.4-1可以初步选择出该结构可以选择的性能范围为4-7,由于属于低烈度区的多层结构,在设计中可以选择“高承载力—低延性”的性能设计思路。可初步选择某个性能,在该工程中选择性能为性能4,则查新钢标表17.1.4-2可以确定结构构件最低的延性等级为Ⅳ级,同时按照钢标表17.3.4-1确定截面板件的宽厚比最低等级为S4级,按照上述确定的参数,填入性能设计时对应的参数如图33所示。


微信图片_20181127144359.jpg


图33 性能设计相关参数


3.3 查看中震下该柱的计算输出结果。


该柱在中震下输出的构件详细信息中,对于性能设计相关参数的展示,如图34所示,对于该柱的强度、稳定应力验算及对应的构造控制输出图35所示的结果。


微信图片_20181127144402.jpg


图34 柱构件中震下输出详细的性能设计参数


微信图片_20181127144405.jpg


图35 柱构件中震下输出强度、稳定应力比结果及构造限值


3.4 柱构造措施长细比、宽厚比及高厚比的放松


通过上述中震下输出的结果可以看到,由于设置的性能等级为4级,并且属于6度区,地震作用很小,中震下的强度应力比的结果比小震下的应力比结果还小,因为小震下该柱构件由恒活风控制,中震下是由地震控制的,不包含风的工况。此时很容易满足中震下承载力的要求,因此,对于柱构件的构造措施均做了放松。按照新钢标表17.3.5柱长细比限值对于延性等级为Ⅳ级,且轴压比小于0.15时,限值为150,软件也输出了150的控制限值,此时不需要调整构件截面,按照性能设计满足承载力要求,长细比限值放松到150,本来按照抗规控制不满足要求的,此时满足了要求。


宽厚比的限值按照小震模型下抗震等级四级控制,抗规的限值为:13*sqrt(235/345)=10.73,按照钢标S4的宽厚比限值为15?k=15*sqrt(235/345)=12.38,软件在小震设计时候进行从严控制,严格意义上讲应该区分抗震组合与非抗震组合,抗震组合下按照抗震控制宽厚比限值,非抗震组合下按照新钢标控制宽厚比限值。但在中震下,满足了承载力要求,对于宽厚比等级为S4级的H截面,其宽厚比限值为15?k=15*sqrt(235/345)=12.38,直接按照性能设计中对应的宽厚比等级控制宽厚比限值即可,手工校核结果与软件计算输出结果一致。在中震下满足了承载力要求,程序已经按照性能设计的要求对于宽厚比的限值做了放松。


腹板高厚比的限值按照小震模型下抗震等级四级控制,抗规的限值为:52*sqrt(235/345)=42.9,同时小震设计时程序要根据新钢标对应的宽厚比等级S4级的宽厚比限值进行双控,而新钢标对应的宽厚比等级S4级是与受力有关系的,要根据应力梯度进行计算。软件输出的37.14的限值,显然该柱在小震下按照新钢标的S4级控制高厚比限值与抗规的四级抗震等级双控的结果,并且输出最不利结果。中震下程序直接按照新钢标性能设计指定的宽厚比等级S4进行高厚比限值的控制,此时限值同样与应力梯度有关系,因此,即使中震下也是S4级的宽厚比等级,但是高厚比的限值控制是不一样的,软件输出的高厚比限值为37.81。


在中震下满足了承载力要求,程序已经按照性能设计的要求对于高厚比的限值进行了控制。注意:由于高厚比的限值与对应构件的应力状态有关,因此,采用性能设计时未必一定能确保高厚比限值放松,有可能高厚比限值反而会减小,从而使要求更加严格。


3.5 SATWE程序自动对性能设计下小震模型和中震模型的包络


SATWE程序在性能设计计算完毕之后,对小震模型和中震模型均做了计算,最终计算结果在主模型下展示了包络后的图形文件,如果要查看详细构件信息,可看到如图36所示该柱包络详细结果,该柱应力比显示了小震与中震包络以后的结果,对于构造措施也是按照包络以后的结果展示的。长细比、宽厚比及高厚比已经展示了包络之后,构造措施按照中震相应的结果输出。


微信图片_20181127144408.jpg


图36 主模型下查看柱构件的详细信息


4  .


对框架支撑体系支撑产生的不平衡力对梁设计影响的考虑


按照新钢标性能设计的要求,对于框架-支撑结构,如果存在交叉支撑或者人字形支撑,这会导致梁和板中均产生较大的轴力,并且按照新钢标对于这种框架-支撑结构,一般要求支撑斜杆应该在支撑与梁柱连接节点失效、支撑系统梁柱屈服或者屈曲前发生屈服,这就要求在拉压支撑达到屈服前框架-支撑体系中与支撑相连的梁应该有足够的刚度和承载力,因此规范对于框架-支撑结构中的梁有压弯计算的特殊要求,并且对于人字形和V字形支撑系统中的框架梁压弯验算时还需要考虑弯矩效应中计入竖向不平衡力产生的附加弯矩影响。梁的压弯验算时,梁的轴力及竖向不平衡力分别按照规范17.2.4相关要求计算如下图37,38所示。


微信图片_20181127144411.jpg


图37 框架-支撑体系中与支撑相连的梁的轴力计算


微信图片_20181127144413.jpg


图38 人字形、V形支撑竖向不平衡力的计算


这种支撑产生的轴力分解到水平方向对梁的轴力会有明显的影响,如果该轴力值直接按新钢标公式直接计算,结果很大,造成梁的设计基本无法设计。按抗震规范8.2.6的条文表述“当人字支撑的腹杆在大震下受压屈曲后,其承载力将下降,导致横梁在支撑处出现向下的不平衡集中力,可能引起横梁的破坏和楼板的下陷,并在横梁两端出现塑性铰;此不平衡集中力取受拉支撑的竖向分量减去受压支撑屈服压力竖向分量的30%。V形支撑情况类似,仅当斜杆失稳时楼板不是下陷而是是向上隆起,不平衡力与前种情况相反。设计单位反映,考虑不平衡力后梁截面过大。”因此,SATWE软件对于这种情况下设置了对轴力进行折减,程序中提供了折减参数,如图39,当选“按照新钢标进行性能设计”时,该按钮被打开,程序默认的“支撑系统中框架梁按照压弯验算时的轴力折减系数”系数值为0.3,设计师可以修改。


微信图片_20181127144416.png


图39 支撑系统中框架梁按照压弯验算时的轴力折减系数


SATWE程序对于做性能设计的框架—支撑结构,对有与人字支撑相连的梁按照新钢标进行了轴力与弯矩的取值,并进行相应内力折减,同时对梁按照压弯构件做了强度与稳定验算。需要注意的时,此时如果有楼板,要进行梁的压弯设计,需要将楼板定义为弹性模或者弹性板6,一般建议定义为弹性模。


5  .


结论


新钢标增加的性能设计属于全新的抗震设计思路,在实际工程的设计中,由于设计的流程比较复杂,确定的设计参数较多,并且由于性能目标的不确定性及各种新概念的出现导致设计师在设计过程中产生很多疑惑。本文结合新钢标对性能设计的要求、PKPM软件及实际工程案例,展示了在设计中如何使配合软件对钢结构工程采用性能设计进行设计,同时对于框架支撑体系遇到的与支撑相连的梁的压弯设计导致梁截面很大的情况软件采用折减系数的方式使得梁的压弯验算实现。对于小震模型和新钢标中震模型是程序根据性能设计相关的参数自动形成,对于满足中震承载力要求的构件,程序在包络主模型下已按照性能设计相关的要求进行了抗震构造措施的控制。


参考文献

[1] GB50017-2017钢结构设计标准[S].北京:中国建筑工业出版社,2017.

[2] GB50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.

[3] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.


微信图片_20180724100728.jpg


15151308090242874575.jpg

全部回复(78 )

只看楼主 我来说两句
  • zihu173
    zihu173 沙发
    谢谢构力科技资料
    2019-02-28 11:34:28

    回复 举报
    赞同0
  • dongdonglaugh
    dongdonglaugh 板凳
    谢谢分享
    2018-12-19 09:48:19

    回复 举报
    赞同0
加载更多
这个家伙什么也没有留下。。。

钢结构工程

返回版块

46.46 万条内容 · 1137 人订阅

猜你喜欢

阅读下一篇

【早安结构】潮汕机场航站楼钢屋盖整体提升技术

(来源:钢构地图 作者:曾令权 郭正兴等,如有侵权请联系我们删除) 1 工程概况 潮汕机场位于广东省揭阳市,航站楼屋顶为空间多曲面焊接球网架结构,正放四角锥形式,沿中轴线方向长约315m,垂直于中轴线方向宽约280m,其中在航站楼东南端入口处有约20m的室外悬挑屋顶(见图1)。在指廊和航站楼的主体连接处,设置1道温度缝,将整个航站楼屋顶分为两部分。屋面网架通过支座由钢筋混凝土柱支撑,钢筋混凝土柱沿航站楼中轴线对称布置,对应于网架支座点标高不同,单边柱顶标高各不相同,为13.8~17.6m。支承柱分斜柱和直柱,网架周边支承柱为方形截面向外斜柱,中柱为圆形钢筋混凝土直柱。钢屋盖采用分区整体提升施工方案,综合考虑结构特点与地面拼装的方便性,将结构分为4个区域进行整体提升,提升分区如图2所示。其中单块提升面积最大为11 592m2,最大提升质量约为754t(A3区)。

回帖成功

经验值 +10