土木在线论坛 \ 环保工程 \ 水处理 \ 污水回用中COD和氨氮的去除方法详解

污水回用中COD和氨氮的去除方法详解

发布于:2017-07-06 09:40:06 来自:环保工程/水处理 [复制转发]
污水回用于循环冷却系统补充水的水质指标进行了分析并提出了部分建议水质指标,对污水回用工程中涉及的COD氨氮深度去除工艺进行了探讨,针对回用目标提出了建议处理方法。

1、概述

随着社会经济的高速发展,有限的水资源越来越不能满足迅速增加的用水要求,造成了工农业和居民用水的严重紧缺现象,国内外都在为解决这一矛盾开发新的水资源,污水回用也相应的成为国内外研究的重点。石化行业是用水大户,也是排水大户,具备污水回用的基本条件,近年来逐渐得到有关部门的重视,有关企业也进行了很多试验研究,取得了不少成果,行业内污水回用的时机也逐渐成熟,可以预计,在不久的将来会迎来污水回用的大发展。

根据污水回用的目的,有用作生活杂用水、生产直流冷却水和循环冷却系统补充水等多种途径,从用水量上看,以循环冷却系统补充水为最大,因此这一回用目标也成为研究的重点,国内多家石化企业已经对炼油污水回用于循环冷却系统补充水进行了多年的试验,证明采用合适的水质稳定配方和合适的深度处理工艺,可以达到循环冷却系统的稳定运行。以下就生产污水经二级生化处理后回用作循环冷却系统补充水的深度处理工艺进行分析。

2、污水回用水质指标

污水回用作为循环冷却系统的补充水时,再生水水质指标应结合循环冷却系统的运行来考虑。在循环冷却水系统中,由于补充水水质的原因,通常会产生结垢、腐蚀和大量微生物繁殖的问题,其中腐蚀和微生物的大量繁殖又是关联的,对循环冷却系统水质的控制也是从解决这三个问题入手。目前各企业循环冷却系统补充水基本上是采用清净地表水、地下水或自来水,而且各自都形成了较完善的水质稳定控制方法,将补充水更换为再生污水后,运行中可能出现的问题可以通过对补充水水质成分变化进行分析得出。

一般情况下,再生污水同其它清净水源相比存在以下特征:

(1)总溶解性固体较高;

(2)COD、BOD5浓度高;

(3)氨氮浓度高;

(4)细菌群落数量多,悬浮物浓度较高。

总溶解性固体高时会使系统的腐蚀倾向增大,其中的钙、镁离子含量高时可能产生结垢;当补充水的有机物浓度(COD,BOD5)和氨氮浓度较高时,微生物可能在循环系统内大量繁殖,进而产生微生物粘垢,如粘垢粘附在管壁或换热器壁上,会产生局部的腐蚀;如补充水中异养菌群数量大,则相当于为系统中微生物的繁殖提供了大量的接种菌群,为微生物粘泥的产生创造了条件,为此在污水回用工程中应对上述指标进行针对性的分析。

对于补充水总溶解性固体,各企业的控制标准不一,低者500mg/L,高者1000mg/L,石化企业一般控制在较低范围内,也有研究[1]表明,当总溶解固体在850mg/L左右时,循环冷却系统仍可稳定运行,建议循环系统补充水总溶解固体的上限值采用1000mg/L,超出此值应采取除盐措施。关于COD标准,美国水污染控制协会建议值为75mg/L,我国研究人员提出一类标准为40mg/L,二类标准为60mg/L,还有些企业提出20mg/L的指标。相关研究表明,石油化工二级处理的污水经深度处理后(COD平均为44mg/L)回用于循环水时,微生物的生长繁殖状况与自来水相近,没有出现大量繁殖的情况。主要原因是回用水中有机物不易被微生物降解,即不能作为微生物代谢的碳源,因此不必对回用水的COD提出过高的要求,建议采用40mg/L。对于BOD5,由于可直接作为微生物基质,建议采用较低值5mg/L。关于氨氮指标,国内外有二种建议值,即3mg/L和1mg/L,建议采用1mg/L。研究表明,对于深度处理后的回用水,即使补充水中异养菌群数量很大,同自来水作补充水相比,并没有产生微生物的大量增殖,采用合适的杀菌剂完全可以控制,而且污水回用处理中,混凝沉淀+过滤作为最基本操作单元,在去除悬浮物的同时可以将大量的细菌去除,因此对异养菌数目不必提出专门的控制指标。

3、污水回用处理方法

在污水回用处理中,除盐工艺由于成本高很少涉及,此处不作分析,悬浮物、浊度和石油类可以通过混凝沉淀、过滤工艺去除并达标,因此重点解决的问题就是COD和氨氮的去除,下面仅就这二个问题进行讨论。

3.1COD的去除

一般情况下,经过二级生化处理后的污水中COD浓度已经降到100mg/L以下,BOD5浓度更低,针对这种水质特点,目前采用的深度处理方法有生化法、活性炭吸附法和臭氧预处理+生化法等。

3.1.1生化处理方法

采用生化处理方法时,由于基质的限制,微生物增长缓慢,如果采用普通的活性污泥工艺,生长很慢的活性污泥将随水流流出,曝气池中的污泥浓度很低,达不到理想的处理效果,因此对二级生化出水一般不采用活性污泥法,而是采用对微生物具有较强固着能力的生物膜法。与普通二级生化处理中的生物膜法不同的是,对污水进行深度处理时对填料的选择应更慎重,主要考虑的指标是填料的挂膜性能,采用普通的软性、半软性塑料或纤维填料时,由于其挂膜性能较差,难以达到预期的处理效果。研究表明,采用生物陶粒填料的接触氧化工艺可以取得很好的处理效果,对于炼油污水,出水的COD可稳定在40mg/L以下。辽宁盘锦沥青股份有限公司采用生物陶粒接触氧化处理生产污水并将处理后污水回用作循环系统补水已经成功的运行了近2年,效果良好。因此采用生物陶粒为载体的生物膜法是深度去除COD的成功工艺。

应说明的是,生化方法所能够去除的主要是二级出水中可以生化降解的有机物,对于生化难降解的有机物是不起作用的。

全部回复(6 )

只看楼主 我来说两句
  • 优普环保
    优普环保 沙发
    阡陌22 发表于 2017-7-7 11:13 同问,是否需要更换呢根据使用程度是需要的更换的呐
    2017-07-11 10:58:11

    回复 举报
    赞同0
  • pxhpc0828
    pxhpc0828 板凳
    新知识,我学习了。
    2017-07-09 01:36:09

    回复 举报
    赞同0
加载更多
这个家伙什么也没有留下。。。

水处理

返回版块

41.93 万条内容 · 1378 人订阅

猜你喜欢

阅读下一篇

MBR专业膜法污水处理优普环保推荐阅读 | 离子交换法

离子交换法的原理是什么? 离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子之间的离子扩散来实现的。推动离子交换的动力是离子间的浓度差和交换剂上的功能基对离子的亲和能力,这就是离子交换的基本原理。 离子交换剂是实现交换功能的最基本物质,根据其材料性质可分为无机离子交换剂和有机离子交换剂,又可分为天然离子交换剂和人工离子交换剂。天然离子交换剂有粘土、沸石、褐煤等,人工合成天然离子交换剂有凝胶树脂、大孔树脂、吸附树脂、氧化还原树脂、螯合树脂等。按其交换能力又可分为强碱性树脂、弱碱性树脂、强酸性树脂、弱酸性树脂等多种类型。离子交换树脂实际上是由网状结构的高分子固体与附着在母体上的许多活性基团构成的不溶性高分子电解质。

回帖成功

经验值 +10