土木在线论坛 \ 电气工程 \ 供配电技术 \ 浅谈全电流不停电启、停槽技术的研究与应用

浅谈全电流不停电启、停槽技术的研究与应用

发布于:2015-09-29 23:51:29 来自:电气工程/供配电技术 [复制转发]
    0 引言

  电解铝生产,一般都采用冰晶石—氧化铝熔盐电解法。该法是以冰晶石为熔剂,氧化铝为熔质,以碳素体做两极,然后在电解槽内通入强大的直流电。在940~960℃温度下,在电解槽内产生电化学反应,在阴极上析出铝,阳极上产生二氧化碳和一氧化碳的混合气体。电解过程中还产生大量的烟气及粉尘,直接排入大气会对环境造成污染。电解槽烟气采用干法烟气净化及氧化铝超浓相输送工艺。该工艺采用氧化铝做吸附剂,吸附电解烟气中的氟化氢以净化有害气体。吸附后的氧化铝除一部分做为吸附剂循环使用外,其余全部通过氧化铝超浓相输送系统输送到电解槽的料箱中,供电解生产使用,净化后的烟气排入大气。

  

   1 阳极效应及对电解槽的影响

  阳极效应是铝电解生产过程中阳极上发生的现象,其效应对铝电解生产既有正面影响,也有负面影响。

  1.1 阳极效应的正面影响:①有利于电解质中炭渣的分离;②可以使黏附在阳极表面上的炭渣得到清理;③有利于熔化槽底的沉淀。

  1.2 阳极效应的负面影响:①发生阳极效应时,阳极上会产生碳氟化合物气体CF4和C2F6,并进入大气。虽不对大气的臭氧层有破坏作用,但它们是很强的温室效应气体,CF4和C2F6温室效应分别是CO2气体的6500倍和9200倍;②阳极效应会熔化槽帮结壳,使电解质分子比增加;③阳极效应会增加电能消耗,提高电解质的温度;④阳极效应会增加铝的损失(特别是当使用鼓入空气或插入木棒的方法熄灭阳极效应时);⑤阳极效应时,使阳极底表面附近电解质温度大幅升高,从而大大增加氟化盐的挥发损失。由以上可以看出,铝电解槽发生阳极效应对铝电解槽的负面影响大于正面影响。因此,先进的铝电解生产技术是努力降低电解槽阳极效应系数,一旦发生,要尽可能缩短效应时间。

  

   2 问题提出

  生产中,所用电解槽采用低压大电流直流电源供电,且多台电解槽串联,而电解铝生产要求定期或不定期将一台或多台槽停电大修。在一百多年的电解铝生产历史中,目标电解槽停电或通电时,只好将全系列断电,即其它非目标电解槽也需在这个时间内停止供电。这不仅会影响整个系列电解槽的生产管理,降低槽寿命;这种大负荷波动极易对电网安全运行造成危害。对于铝电合一的电解铝企业,还导致发电量降低、能耗大幅度增加;而且将目标槽短路后再断开和接入的方式,由于系列电流太大,直接短路操作会产生能量很高的直流电弧,甚至可能引起爆炸,威胁人身和设备安全。频繁停、启槽会使槽温波动,减少产量,随之带来的是槽内条件变化,阳极效应发生,使消耗增高。因此,寻求系列槽不停电停、启槽技术的开发研究从来没有停止过,但始终没有找到很好的解决办法。


   3 可行性分析

  290kA电解槽以往通槽都将负荷压到10kA后,再进行短路口操作(操作时,短路口的电压降到2V以下)。如果用两个气缸顶住短路口10个接触面中的4个(相当于4个大分流),同时再增加小分流的数量,这样,短路口其余6个面的压降就相当小,人工操作即可将其打开,然后,用气缸把压住的4个面也打开,就能实现对电解槽不停电通槽。可采用不压负荷的通槽方法。

  3.1 分流量的大小按50%进行计算。

  3.2 气缸的选型:行程>100mm 拉力>1000kg/cm2工作压力>0.6MPa。

  3.3 将装置接上气源、电源,在未接入母线回路的槽上进行动作试验,观察动作是否良好。

  3.4 在准备通电的槽上加装大分流,安装好装置,将负荷压到200kA,观察效果是否良好。如不打火花且冲击电压在2.5V以内,则进行第2次实验;将负荷压到250kA,再次观察,冲击电压在2.7V以内;可以进行第3次不压负荷,冲击电压在2.8V以内,短路口不再出现火花,即证明实验成功。

  

   4 应用后的效益分析

  4.1 节能效果(减少效应) 在应用不停电启动电解槽技术前,电解槽启动和停槽均需要系列停电或降低系列负荷(降至10kA)后再进行操作,每一次操作需要30min。这不仅影响系列运行的稳定性,造成减产,又增加了阳极效应。每次启动至少增加效应30个。这里所谓效应系数,定义为每天(24h)发生阳极效应的频率(次数);每个效应电压升高30V;效应时间为6min。电解槽设计寿命为1500~1800d,就是说,电解槽至少每5a需要重新砌槽一次。意味着每年有20%的电解槽要停槽大修重新启动。不停电通槽技术操作已经作为一项工艺规程编入了公司技术规范,在以后的电解生产中熟练应用。公司现有268台电解槽,每年的停槽大修量有54台,每年要进行不停电操作108次,每年节约电耗:

  单槽启动节电:290×0.1×30×30=26100kWh

  大修启、停槽节电:26100×108=2818800kWh(1)

  新槽启动节电,则:26100×184=4802400kWh(2)

   (1)+(2)=7621200kWh

  折合标煤:7621200×0.35/1000=2667.42t

  4.2 增产效益 如停电通槽或降负荷通槽的每天按30min计算,平均电流按150kA,电流效率按93%计算,与不降负荷通槽相比,则少产铝为:(290kA×0.3356g/A.h×0.5h×184台×0.93-150 kA×0.3356×0.5h×184台×0.93)×46次=184.92t。

  每吨按2万元算,不降负荷通槽多出产值:

  184.92×20000=3698400元

  若把全电流不停电启、停槽技术在全国进行推广普及应用,其效益非常巨大。

  

   5 结语

  要使铝电解生产取得很好的性能指标,不仅要保持技术条件的平稳性,而且要建立良好的热平衡,同时,要最大限度减少无效电压,提高电流效率,以有效降低吨铝电耗。平稳的电解生产是各项技术条件综合作用的结果,各项技术条件之间存在着一定关系。某一项条件发生变化,其他条件也会随之改变,并且发生病槽后电流效率下降,电耗增高。所以,确保技术条件的平稳性,最大限度提高电流效率,可以很好降低吨铝电耗。全电流不停电启、停槽技术的成功应用是电解铝生产工艺的一次突破。

这个家伙什么也没有留下。。。

供配电技术

返回版块

97.86 万条内容 · 2077 人订阅

猜你喜欢

阅读下一篇

浅论农村电网中剩余电流动作保护器的选型与安装维护

   0 引言   剩余电流动作保护器(RCD)即人们通常所称的漏电保护器,作为农村低压电网及电气设备的安全技术保护装置,因它能防止电气设备绝缘损坏或其他原因造成的漏电,有效避免或减少触电伤亡事故,故在农村地区广泛推广和使用。装设剩余电流动作保护器的低压电网必须是电源中性点直接接地系统(TT系统),即网络内所有受电设备的外露可导电部分用保护接地线(PE线)接至电气上与电力系统的接地点无直接关联的接地极上。农村低压电网基本上采用的是配变低压侧中性点直接接地,根据TT系统保护器的设置要求,应在低压配电室设置总保护,在受电设备处装设剩余电流动作末级保护,对于供电范围较大或有重要用户的低压网络可酌情增设中级保护。剩余电流动作总保护有三种安装方式,可根据实际情况合理选择:①安装在电源中性点接地线上;②安装在电源进线回路上;③安装在各条低压出线回路上。

回帖成功

经验值 +10