土木在线论坛 \ 电气工程 \ 变压器 \ 变压器故障油色谱分析方法探讨

变压器故障油色谱分析方法探讨

发布于:2015-09-10 13:56:10 来自:电气工程/变压器 [复制转发]
  1. 电力变压器的内部故障主要有过热性、放电性及绝缘受潮等类型

  1.1 过热性故障是由于设备的绝缘性能恶化、油等绝缘材料裂化分解。又分为裸金属过热和固体绝缘过热两类。裸金属过热与固体绝缘过热的区别是以CO和CO2的含量为准,前者含量较低,后者含量较高。

  1.2 放电性故障是设备内部产生电效应(即放电)导致设备的绝缘性能恶化。又可按产生电效应的强弱分为高能放电(电弧放电)、低能量放电(火花放电)和局部放电三种[1]。

  1.2.1 发生电弧放电时,产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体。这种故障在设备中存在时间较短,预兆又不明显,因此一般色谱法较难预测。

  1.2.2 火花放电,是一种间歇性的放电故障。常见于套管引线对电位未固定的套管导电管,均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体,但由于故障能量较低,一般总烃含量不高。

  1.2.3 局部放电主要发生在互感器和套管上。由于设备受潮,制造工艺差或维护不当,都会造成局部放电。产生气体主要是氢气,其次是甲烷。当放电能量较高时,也会产生少量的乙炔气体。

  1.3 变压器绝缘受潮时,其特征气体H2含量较高,而其它气体成分增加不明显。

  值得注意的是,芳烃含量问题。因为它具有很好的“抗析气”性能。不同牌号油含芳烃量不同,在电场作用下产生的气体量不同。芳烃含量少的油“抗析气”性能较差,故在电场作用下易产生氢和甲烷,严重时还会生成蜡状物质;而芳烃含量较多的绝缘油“抗析气”性能较好,产生的氢气和甲烷就少些,因此,具体判断时要考虑这一因素的影响。

2. 色谱分析诊断的基本程序

  2.1 首先看特征气体的含量。若H2、C2H2、总烃有一项大于规程规定的注意值的20%,应先根据特征气体含量作大致判断,主要的对应关系是:①若有乙炔,应怀疑电弧或火花放电;②氢气很大,应怀疑有进水受潮的可能;③总烃中烷烃和烯烃过量而炔烃很小或无,则是过热的特征。

  2.2 计算产生速率,评估故障发展的快慢。

  2.3 通过分析的气体组分含量,进行三比值计算,确定故障类别。

  2.4 核对设备的运行历史,并且通过其它试验进行综合判断。

  3. 油中主要气体含量达到注意值时故障分析方法

  在判断设备内有无故障时,首先将气体分析结果中的几项主要指标,(H2,∑CH,C2H2)与色谱分析导则规定的注意值(表1)进行比较。

表1 正常变压器油中气,烃类气体含量的注意值

气体组分
H2
CH4
C2H6
C2H4
C2H2
总烃
含量(10-6)
150
60
40
70
5
150
  3.1 当任一项含量超过注意值时都应引起注意。但是这些注意值不是划分设备有无故障的唯一标准,因此,不能拿“标准”死套。如有的设备因某种原因使气体含量较高,超过注意值,也不能断言判定有故障,因为可能不是本体故障所致,而是外来干扰引起的基数较高,这时应与历史数据比较,如果没有历史数据,则需要确定一个适当的检测周期进行追踪分析。又如有些气体含量虽低于注意值,但含量增长迅速时,也应追踪分析。就是说:不要以为气体含量一超过注意值就判断为故障,甚至采取内部检查修理或限制负荷等措施,是不经济的,而最终判断有无故障,是把分析结果绝对值超过规定的注意值,(注意非故障性原因产生的故障气体的影响,以免误判),且产气速率又超过10%的注意值时,才判断为存在故障。

  3.2 注意值不是变压器停运的限制,要根据具体情况进行判断,如果不是电路(包括绝缘)问题,可以缓停运检查。

  3.3 若油中含有氢和烃类气体,但不超过注意值,且气体成份含量一直比较稳定,没有发展趋势,则认为变压器运行正常。

  3.4 表1中注意值是根据对国内19个省市6000多台次变压器的统计而制定的,其中统计超过注意值的变压器台数占总台数的比例为5%左右。

  3.5 注意油中CO、CO2 含量及比值。变压器在运行中固体绝缘老化会产生CO和CO2。同时,油中CO和CO2的含量既同变压器运行年限有关,也与设备结构、运行负荷和温度等因素有关,因此目前导则还不能规定统一的注意值。只是粗略的认为,开放式的变压器中,CO的含量小于300μl/L,CO2/CO比值在7左右时,属于正常范围;而密封变压器中的CO2/CO比值一般低于7时也属于正常值。

  3.6 应用举例

  3.6.1 济源供电公司220KV虎岭变电站3#主变,1978年生产,1980年投运至今已运行28年,接近设备的寿命期。从2004年开始的油色谱报告分析中就存在多种气体含量超标现象,具体数据见表2

表2 虎岭变2#主变油色谱分析报告

气体

成份

甲烷

乙烯

乙烷

乙炔


CO

CO2

总烃

日期

含量ml/l

23.09

68.81

5.61

5.31

23.9

504.98

4000

103

2004.5.4

38.94

111.8

8.94

7.21

28.77

907.7

5910

166.9

2005.6.8

28.14

90.08

7.22

5.56

23.29

705.5

5043

131

2006.8.18

28.11

64.5

6.4

5.01

25.7

680.7

4980

129

2007.3.20

25.23

75.80

7.12

6.3

19.5

702.9

5432

114

2007.11.5

18.76

81.08

6.24

5.63

14.76

716.7

5680

111.7

2008.3.10

  对上述数据跟踪分析,有不同程度乙炔、乙烯、总烃超过注意值,考虑变压器运行年限、内部绝缘老化,结合外部电气检测数据,认为该变压器可继续运行,加强跟踪,缩短试验周期。目前此变压器仍在线运行。

  3.6.2 2003年4月15日,35KV黄河变电站1#主变预试时发现氢气含量明显增长。变压器型号为:SL7-5000KVA/35,2001年8月投运,具体色谱数据如下:

气体

成份

甲烷

乙烯

乙烷

乙炔


CO

CO2

总烃

日期

含量ml/l

1.89

0.75

6.52

1.93

9.28

56

265

9.8

2002.5.5

2.26

1.65

7.33

3.98

123.56

69

256

15.22

2003.4.15

  分析结果:色谱分析显示氢气含量虽未超过注意值,但增长较快,为原数值的12倍,其它特征气体无明显变化,说明变压器油中有水份在电场作用下电解释放出氢气,同时对油进行电气耐压试验,击穿电压为28KV,微水测定为80ppm,进一步验证油中有水份存在。经仔细检查发现防暴筒密封玻璃有裂纹,内有大量水锈,外部水份通过此裂纹进入变压器内部。经处理后变压器油中氢气含量恢复正常。

 4.故障产气速率判断法方法

  4.1 实践证明,故障的发展过程是一个渐进的过程,仅由对油中溶解的气体含量分析结果的绝对值很难确定故障的存在和严重程度。因此,为了及时发现虽未达到气体含量的注意值,但却有较快的增长速率的低能量潜伏性故障,还必须考虑故障部位的产气速率。根据GB/T7252—2001《变压器油中溶解气体分析判断导则》中推荐通过产气速率大小作为判断故障的危害程度,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)具有重要的意义。当相对产气速率(每运行月某种气体含量增加值占原有起始值的百分数的平均值),总烃的产气速率大于10%时应引起注意,变压器内部可能有故障存在,如大于40μl/L/月可能存在严重故障。但是,对总烃起始含量很低的变压器不易采用此判据[2]。

  4.2 根据总烃含量、产气速率判断故障的方法

  4.2.1 总烃的绝对值小于注意值,总烃产气速率小于注意值,则变压器正常;

  4.2.2 总烃大于注意值,但不超过注意值的3倍,总烃产气速率小于注意值,则变压器有故障,但发展缓慢,可继续运行并注意观察。

  4.2.3 总烃大于注意值,但不超过注意值的3倍,总烃产气速率为注意值的1~2倍,则变压器有故障,应缩短试验周期,密切注意故障发展;

  4.2.4 总烃大于注意值的3倍,总烃产气速率大于注意值的3倍,则设备有严重故障,发展迅速,应立即采取必要的措施,有条件时可进行吊罩检修[2]。

  4.2.5 应用举例

2006年6月2日,济源供电公司110KV星光变1#主变投运,投运时油色谱分析报告为:

气体成份

甲烷

乙烯

乙烷

乙炔


CO

CO2

总烃

含量ml/l

0.16

0.13

0

0

7.37

10.89

327.52

0.29

投运后1个月,2006.7.21号开始跟踪,具体所测数据如下:

气体

成份

甲烷

乙烯

乙烷

乙炔


CO

CO2

总烃

日期

含量ml/l

19.69

48.18

4.83

0.99

38.5

85

501

74

2006.7.21

16.54

39.5

3.93

0.85

31.8

79

292

61

2006.7.24

29.7

70.3

6.59

1.12

64

173

666

108

2006.8.18

28.11

64.5

6.4

1.11

52.7

170

572

100

2006.8.28

33.9

80.1

7.89

1.21

78

252

698

123

2006.9.5

40

119

12

6.9

107

258

1800

177.7

2006.9.13



这个家伙什么也没有留下。。。

变压器

返回版块

14.13 万条内容 · 367 人订阅

猜你喜欢

阅读下一篇

浅谈关于变压器差动保护的几个观点

  一、引言      变压器差动保护是变压器的主保护,一般采用的是带制动特性的比率差动保护,因其所具有的区内故障可靠动作,区外故障可靠闭锁的特点使其在系统内得到了广泛的运用。其中有许多文献[1][2]都对上叙二种故障情况做出了详尽的分析,但是从现场工程实际来看,当变压器发生区外短路故障时,由于变压器本身流过巨大的短路电流而对其本体的绝缘和性能造成了破坏,同时伴随着变压器内部发生匝间短路故障的情况也时常发生,这就要求差动保护在这种情况下也能够可靠动作而不被误闭锁,这就对差动保护提出了更高的要求。本文就从上叙工程现场出现的问题出发,对这种情况进行重点分析。

回帖成功

经验值 +10