【摘 要】.本文通过双头桩机在长江垂直防渗施工中所遇到的问题,发现原来施工工艺的不合理性,通过现场观察、分析以及试验确定了合适的施工工艺并取得了良好的施工效果。 【关键词】.双头桩机;垂直防渗;工艺改进 1. 工程概况. 荆南长江干堤加固工程,堤身填土由粉质壤土、粉质粘土及砂壤土组成,局部夹粉细砂,土体不均一,密度偏低,局部含腐植物根及砖瓦碎片,一般厚度4~8m。 堤基土层主要包括粉细砂、砂壤土、以及粉质壤土、粉质粘土和粘土。基岩仅在石首河段有零星出露。粉细砂及砂壤土为相对透水层,粉质壤土、粉质粘土和粘土多形成相对隔水层。?. 2. 施工技术参数及施工工艺. 2.1 施工技术参数。 (1)提升搅拌速度(送浆):1.0m/min (2)转速45r/min (3)泵送浆量:55l/min (4)水灰比:0.8(水泥100kg/m,水80kg/m) (5)水泥浆比重:1.65。? 2.2 墙体设计。 使用的双头深搅桩机(sjb-ⅱ型)的钻头直径为510mm,十字型钻头,两个钻头的轴间距为390mm,移动一次钻机可施工一组两个连续的桩,每组两个桩之间搭接120mm,组内最小墙厚328mm,相邻两组桩中心距771mm,相邻两组桩搭接129mm,组间成墙最小厚度339mm。 传统施工顺序图见图1。2.3 施工工艺的选择。 施工工艺:采用以下四种工艺进行试验施工。 (1)钻进→提升搅拌注浆→下沉搅拌→提升搅拌注浆; (2)钻进→提升搅拌注浆→下沉搅拌注浆→提升搅拌; (3)钻进注浆→提升搅拌注浆→下沉搅拌注浆→提升搅拌; (4)钻进注浆→提升搅拌注浆→下沉搅拌→提升搅拌。 最后确定每施工工艺流程为:钻进→提升搅拌注浆→下沉搅拌→提升搅拌注浆→平移771mm。 2.4 施工中发现的问题。 但是在施工过程中我们发现,虽然双头深搅 桩机的注浆管在两个钻头之间,组内两根桩搭接 良好,但由于十字钻头结构所限,加上堤顶填土的含水量很小、土体干硬,造成部分相邻两组桩桩头部位的搭接处有夹泥现象严重并有蜂窝麻面,有的形成贯通上下游的泥质通道;有时甚至会出现桩位偏差太大的情况,使桩的垂直度难以得到很好的保证,这两个主要问题的存在,在很大程度上影响了防渗墙的质量。对此,我们采取了降低提升搅拌速度、加大注浆量等措施,但效果仍不十分明显。为解决此问题,我们分析了问题所存在的原因,通过现场的观察和试验,认为十字钻头加上堤顶填土的性质造成了施工时的搅拌不均匀,从而形成了桩间搭接处的夹泥现象,遂对其施工工艺进行了改进,提高了成墙质量,取得了良好的效果。? .图2 改进后施工顺序图 . 3. 施工工艺的改进. (1)经过现场对双头钻机性能及成桩实际情况的分析研究,经几次试验以后,我们提出了改进的施工工艺。经过几次现场试验施工,得出了较为满意的施工工艺。 改进后的施工工艺流程为:首次钻进→注浆提升搅拌→下沉搅拌→注浆提升搅拌→平移390mm→钻进→注浆提升搅拌→平移390mm→钻进→注浆提升搅拌……(即先施工1#、2#桩,然后2#、3#桩,然后3#、4#桩,……) 。钻机每次移动一个桩位,其他施工技术参数不变,简单地说就是两个钻头中,一个在钻进注浆搅拌,另一个在复搅注浆搅拌(改进后施工顺序图见图2)。(2)经过现场试验,并对桩头部分开挖检查,效果很好;并且总水泥用量不变,总施工时间没有延长,操作也简单。后进行取芯检验,所得指标完全符合要求,防渗墙的质量大为提高,没有发现桩位偏差现象。双头深搅桩机施工工艺改进后,为了不影响单元放线长度及原施工单元划分方案,钻机每次平移386mm。. 4. 施工工艺改进后的主要优点. (1)部分桩头搭接处的夹泥现象完全解决。每组桩间的搭接都转化为每组桩的内部搭接,增加了搅拌的均匀性。 (2)完全保证防渗墙的最小厚度大于300mm。每个桩的搭接都转化为每组桩的内部搭接,最小厚度为328mm。(3)每个桩都能充分复搅,复搅的深度有保证。只要控制桩的钻进深度,就可保证上根桩的复搅深度。 (4)由于钻进与复搅都注浆并且注浆量基本相同,可以使每根桩水泥掺量更均匀,很好的保证了防渗墙质量。 (5)桩的垂直度问题得到了很好的解决,保证了防渗墙的质量,通过开挖检查以及取芯检验,基本上没有出现桩位偏差现象。. 5. 结论与建议. (1)实践证明,改进后的施工工艺比较好的解决了原来存在的诸多问题,是一种可行性较强的施工工艺。 (2)在进行开挖检查和取芯检验以后,认为防渗墙搭接可靠、连续完整。渗透系数k<1×10-6?cm/s,墙体垂直度<0.2%。 (3)根据开挖检查和取芯检验的结果,我们认为既然改进后的施工工艺可以很好的保证防渗墙的质量问题(如桩间搭接、墙体垂直度等),那么就没有必要把桩间搭接的尺寸设置的太大。可不可以在保证墙体有效厚度的前提下,减少桩间的搭接尺寸。对于sjb—ⅱ型双头钻机来说,在保持轴间距不变(390cm)的情况下, 减小钻头直径。这样就可以减少水泥用量,降低施工成本。 |
0人已收藏
0人已打赏
免费0人已点赞
分享
市政工程施工
返回版块15.09 万条内容 · 378 人订阅
阅读下一篇
爆破挤淤技术在海堤填筑中的应用【摘要】爆破挤淤技术是地基处理方式之一,主要应用于沿海区域淤泥较深的地质条件。爆破挤淤作为软基处理的方法之一,具有施工工期短、堤身密实、整体稳定 性好及节省投资等优点。本文介绍了爆破挤淤的原理,详细阐明了爆破挤淤参数计算,分析了施工工艺操作要点 ,探讨了施工过程中的管理。 【关键词】爆破挤淤技术 海堤填筑 应用 质量控制 中图分类号:O213.1 文献标识码:A 文章编号: 一、前言 爆破挤淤(也称爆破排淤填石)处理软土地基是通过置换一定深度的淤泥,使地基达到设计承载力和满足地基在一定时间内沉降要求的施工工艺。其优 点是爆破作业时间短、车辆通过能力强、堤身推进速度快、工程质量可靠等。适用于抛石置换水下淤泥质软基的防护堤、护岸、海堤等工程。 二、爆破挤淤参数计算 一般情况下,爆破挤淤参数可按如下公式进行计算: 1、线药量ql(kg/m) qL=q0•LH•Hmw(1) Hmw=Hm+(γw/γm)•Hw(2) 式中:LH为单循环进尺量,一般取4~7m;Hmw为计入覆盖水深的折算淤泥深度,m;Hm为淤泥深度,m;Hw为覆盖水深,即淤泥面以上的 水深,m;go为爆破挤淤法药量单耗,一般取0.6~1.0kg/m3;γ为水的重度,kN/m3;γm为淤泥重度,kN/m3。 2、单次爆破药量 Q=(O.8~1-2)B•qL式中B为堤头处宽度。 3、药包埋深 HB=(0.20~0.45)Hmw 4、药包间距:α=2.0~3.0m 5、群药包布药宽度 Lb=(o.8~1.2)B一次起爆的总药量应根据爆破安全要求进行适当控制。 爆破设计参数 由于爆破挤淤的平均厚度约8~12m、最深为15m,因此爆破挤淤的机理、装药工艺、爆破参数的设计及施工组织都不同于以往的浅厚度淤泥的爆 破挤淤施工。交通部制定的《爆破法处理水下地基与基础技术规程》的有效深度适宜在12m以内,而部分新筑堤段的淤泥深度超过12m,超过了上述限定的适用 范围。因此,根据上述公式并参照以往工程经验和试验,得到爆破挤淤参数如下:药量:单药包30kg;布药宽度28-~40m;布药位置:离石与泥交界线 1.5---2.0m;埋药孔距1.8~2.5m;埋药深度0.5n--0.8 Hm(Hm为处理淤泥层厚度),即5~12m,起爆水深0---2.Om;循环推进量6~7m;超抛高度1.5--2.0m。 6、装药深度的计算 药包插设深度按下式计算。 (5.2.4-2) 式中H —— 装药器插入深度、即装药筒插设刻度线标高,m; H药 —— 炸药药包高度,m; H设 —— 药包设计埋入深度,m,按下表选取。 药包设计埋入深度 淤泥厚度折算按下式计算: (5.2.4-3) 式中Hmw —— 计入覆盖深水的折算淤泥厚度,m; Hm —— 置换淤泥厚度,含淤泥包隆起高度,m; Hw —— 覆盖水深,即泥面以上的水深,m; γw —— 水重度,kn/m3; γm —— 淤泥重度,kn/m3。 三、施工工艺操作要点 1、施工前准备 首先应进行爆破区及周围现场的勘察,特别是周围建筑物设施的安全调查,并送当地公安部门和水上安全监督部门审查批准,办理火工品购买手续,发 布爆破施工通告。此后,连同其他资料文件报业主、监理工程师审查批准后实施。同时,根据业主提供的坐标控制点,水准点,进行实地校核,发现问题及时提交业 主解决,在施工区内建立控制网点,水准点,便于控制施工进展,根据设计施工图纸进行放样,设立抛填标志。 2、起爆网路 爆破挤淤施工的起爆网路比较简单,首先用导爆索加工成起爆体放入药包中,然后将药包埋入泥中一定深度处,同时将导爆索引出水面,并与主导爆索相连(并联),主导爆索可用单股或双股,最后用电雷管(或非电雷管)起爆。 爆破网络布置图 3、抛填参数的设计 抛填参数的设计是爆炸挤淤达到设计断面要求的关键因素,爆炸挤淤一方面强调爆炸载荷的作用,同时要保证在挤淤时有充足的石料,并尽可能的防止 超出设计断面,因此抛填高程、宽度、进尺等参数的控制尤其关键。根据本工程设计断面形状,在爆炸处理软基施工时,抛填采用“堤身先宽后窄”的方法,使得爆 后水下平台宽度一次到位,而爆后补抛时堤身缩窄以控制方量,尽量减少理坡工作量。抛填中大块石尽量抛在堤身外侧,以利防浪冲刷。 (一)抛填高程的控制。根据土工计算原理和堤身设计高度,经过理论分析计算,确定堤身抛填高度。设计原则是:在方便堤面施工、施工期高潮位时 堤顶不过水、爆后堤顶不超高的前提下,抛填高度应尽量高,以最大限度地达到挤淤效果;同时要考虑减少平台上多余石方量,综合多方面因素。 (二)抛填宽度的控制 。爆破挤淤工程成功与否的关键因素之一就是要保证平台的宽度和厚度,从以往的工程实践中可以知道,在深厚淤泥中平台的形成必须在堤头爆填时一次到位,通过 侧爆向两侧拉出平台的作用是有限的,因此在堤头爆填时就要严格控制抛填的宽度。抛填宽度的计算取决于以下几个因素:断面总的宽度,抛填高程,泥面高程等参 数,同时需要兼顾抛填车辆通行。 (三)抛填进尺的控制 。采用“堤身先宽后窄”的方法,使得爆后水下平台宽度一次到位,而爆后补抛时堤身缩窄。进尺过短易造成坡上大量重复抛填,进尺太长对堤身落底有影响,应综合考虑实际的地质情况,施工状况和坡上重复抛填情况,决定进尺长度。 四、施工管理 1.施工安全 在施工中严格执行《爆破安全规程》,计算水中冲击波安全允许距离、爆破安全警戒距离;爆破器材由专人领取、管理、记录爆破器材使用情况。根据 国家有关规定,爆破器材不准在施工现场过夜。每天爆破剩余的爆破器材必须如数退回炸药仓库。对使用爆破器材进行检查,发现不合格产品禁止使用。爆破完毕后 进行安全检查,从爆炸物品运输、使用全程严格管理,杜绝了任何可能的爆破安全事故的发生,做到了零伤亡事故。 2.环境安全 严格控制一次起爆药量产生的爆破震动,不超过交通部行业标准《爆破法处理水下地基和基础技术规程》中规定的抗震能力要求,普通民房的抗震能力为震速V=2-3cm/s,钢筋砼框架结构房V=5cm/s,重力式码头V=5-8cm/s,爆破地震速度计算公式: V=K*(3√Q/R)acm/s 式中:R:距爆破点距离,Q:一次起爆药量,K、a为与传震介质等有关的系数、指数,根据经验对爆炸处理软基筑堤施工,取K=7450、a=1.65. 3.质量安全 (一)工程质量控制标准 :施工期与使用期内,不得出现滑移;处理完成后,每20米设置2个沉降观测点,进行长期沉降观测,三个月内的工后沉降量不超过30cm;断面尺寸误差,理 坡后符合工程规范标准;抛石为混合料,块度偏大为宜,必须严格控制混合石料中的泥、砂含量,控制标准为:泥砂含量小于10%。 (二)施工中的质量控制要求。爆炸处理前后须进行测量,堤身处理后用经纬仪和水准分别测量纵横剖面,测量间距2.0m,侧向处理前后每10m测量一个横断面。竣工时每20m测量一个完整横断面。 4、抛石置换深度检测 。抛石置换深度是保证围堤稳定的重要条件。爆炸处理后抛石置换落底标高误差为+0~-1.0m,填石落底宽度要求0~2.0m。抛石置换深度与稳定性检验 可从宏观判断与多种方法检测两方面进行。经上百次爆炸振动作用的围堤,施工期内如果不出现滑移或过量沉降,从宏观上可以判断,在使用期内围堤的稳定性是有 充分保证的。抛石置换深度检测有多种方法,比较常用的有体积平衡法、钻孔检测、探地雷达检测。 结论 通过对爆破挤淤技术的理论研究、施工过程管理和事后分析,爆破挤淤施工需要结合爆破试验对爆破参数进行多次修改和优化,选择更为合理的爆破参数,在施工工程中严格控制每个施工环节,最终取得满意的爆破挤淤效果。 【参考文献】 [1] 连云港港口工程设计研究所.JTJ/'1258--98 爆破法处理水下地基和基础技术规程[S].北京:人民交通出版社,1999. [2] 乔继延,丁桦,郑哲敏.爆炸排淤填石法机理研究[J].岩土工程学报,2004,24(3):349.352.
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳