土木在线论坛 \ 暖通空调 \ 制冷技术 \ 变频技术在空调器节能中的应用

变频技术在空调器节能中的应用

发布于:2015-06-24 21:18:24 来自:暖通空调/制冷技术 [复制转发]
  霜层的增加使换热器换热效果降低,所以当霜层达到一定值时,需要对换热器进行融霜,以进步换热器及系统的性能,但融霜过程增加了额外的能量进进系统,使系统性能下降,被冷却的环境温度上升。因此对蒸发器融霜特性的研究,对于进步换热器的性能来说是至关重要的。对此,国内外学者进行了一些研究。
  实验研究了融霜时风机运行与不运行后对蒸发器性能的影响,为融霜时确定风机运行状态在换热器性能影响方面提供实验性依据。
  一、实验装置及测试工况
  一个配有各种丈量设备的用于测试换热器性能的风道设置于测试室内,如图1所示。测试室内设有预冷器,第二制冷剂采用乙二醇,乙二醇被R407C制冷机冷却并送进预冷器对测试室降温,测试室内能对温湿度进行控制,对测试换热器的融霜是采用常温下乙二醇液体进行的。
  所有的实验均在恒定室内温度及相对温度的条件下进行的,在测试室的温湿度未达到所需的工况要求时,第二制冷剂仅进进预冷器。当测试室温度达到设计工况时,第二制冷剂进进测试换热器,并开始采集数据。测试工况见表1。
  二、实验用换热器结构
  本实验中采用了一个带有百叶窗翅片的微型通道换热器,换热器翅片间距为1.69mm,百叶窗叶片间距为1.4mm,迎风面积为0.226m2。换热器的外型尺寸:长为152mm、高为149mm、宽为21mm。具体外形结构如图2所示。
  三、融霜时风机运行与不运行时的换热器性能实验研究
  当室内温度达到0℃、相对湿度为70%时,控制通过换热器的面风速为0.9m/s,并将温度为-14.5℃的第二制冷剂供进测试换热器内,同时开始采集数据。由于换热器表面开始结霜,换热器空气侧的压降dp将增加,当换热器表面的压力降dp增到5倍于干表面状态下的空气压降值时,停止对换热器供泠,将常温下20℃的乙二醇供进换热器中,进行融霜,融霜时间为3min,融霜结束后,转换阀门继续开始对换热器供冷,直至下一次融霜。图3为在融霜时风机运转与不运转时带有15次冻融循环的换热器压力降dp随时间t的变化比较图。
  在融霜时无论风机是处于运行状态还是不运行状态,在每一结霜循环中,由于霜层的不断累积,换热器空气侧的压降dp随时间t均不断的增加,但对应融霜时风机运行状态的情况,压力降增加的速度较风机不运行时慢,在同样的融霜次数下,可运行更长的时间。
  同时留意到,对于两个状态下的冻融循环,在最初的若干个结霜循环中,起始的压力降均出现增加,每一新循环的起始压力降高于前一个循环压力降,这是由于融霜水量较小,并全部滞留在换热器表面。若干循环以后,融霜水从换热器表面开始排出,换热器空气侧的压降到达了一个稳定状态(如图中的两条虚线)。但在稳定状态,融霜时风机运行状态的结霜循环起始压力降低于在融霜时风机不运行状态的起始压力降(如图中的两条虚线,上部虚线为风机不运时状态,下部虚线为风机运行状态),这表明对于融霜时风机的运行状态,能增大换热器表面的排凝水的能力,融霜结束时积存于换热器表面的凝水量将减小,因而压力降下降。
  融霜时风机运行与不运行状态下换热器制冷量的变化
  在融霜时风机运行与不运行状态,换热器在每一结霜循环的制冷量Q随时间t有变化情况比较图。图中表明,对于两种状态,对应每一结霜循环,换热器的制冷量Q均随霜层的增加而减小,在每一次融霜后再次开始制冷时,制冷量达到最大,比较两种状态的冻融循环,风机运行的状态循环,有着较大的制冷量Q,说明其换热性能比融霜时风机不运行状态要好。
  四、结语
  本文对融霜时风机运行与不运行状态下对换热器性能的影响进行了实验性的研究,结果表明:
  (1)对于每一冻融循环,需要经过若干个冻融循环后,换热器起始的压力降开始不变,但对于融霜时风机运行状态,在稳定状态,换热器结霜时的起始压力将降低于融霜时风机不运行状态的起始压力降;
  (2)融霜时风机运行状态换热器的排凝水能力大于融霜时风机不运行状态的排凝水能力;
  (3)对融霜时风机运行状态,在结霜循环时,压力降增加的速度较风机不运时慢,在同样的融霜次数下,可运行更长的时间;
  (4)对融霜时风机运行状态,在起始结霜时有着较大的制冷量,其换热性能比融霜时风机不运状态要好。
这个家伙什么也没有留下。。。

制冷技术

返回版块

14.59 万条内容 · 788 人订阅

猜你喜欢

阅读下一篇

空调、供热水系统泵的节能

  1、序言  《民用建筑节能设计标准》规定,供热系统中循环水泵的电功耗一般应控制在单位建筑面积0.35~0.45W/m2的范围内,实际上约为0.5~0.6 W/m2,甚至高达0.6~0.9 W/m2.  供热空调泵系统存在设计电功率容量偏大,运行耗电量较高的问题,而泵的电耗在空调供热系统能耗中占的比重也较大,设计泵电功率容量大要求增大发电容量,增大峰谷差;运行耗电量大意味着发电煤耗的增大和污染物排放量的增大;容量增大使初投资加大,运行电耗增大使耗电费增多,两者都提高了空调供热运行成本,加大了热(冷)费用和用户的负担。为此,必须了解空调供热泵容量和能耗增大的原因,探讨泵节能的方法,并从设计、设备和调速方法上提出改进的措施。

回帖成功

经验值 +10