土木在线论坛 \ 暖通空调 \ 采暖供热 \ 供热系统热负荷的优化研究

供热系统热负荷的优化研究

发布于:2015-06-24 21:22:24 来自:暖通空调/采暖供热 [复制转发]
  1 供暖系统设计的热负荷简介
  人们为了生产和生活,要求室内保证一定的温度。一个建筑物或房屋可有各种获得热量和散失热量的途径。当建筑物或房间的失热量大于得热量时,为了保证室内在要求温度下的热平衡,需要由供暖通风系统补进热量,保证室内要求的温度。供暖系统的热负荷是指在某一室外温度tw下,为了达到要求的室内温度tn,供暖系统在单位时间内向建筑物供给的热量。它随着建筑物得失热量的变化而变化。
  2 神经网络模型的构造
  供热负荷优化神经网络的建立关键在于输入、输出变量的选取、隐含层数的确定、隐含层单元数、的确定、连接方式的选择、初始参数的选择等。BP神经网络是采用误差反向传播(ErrorBackPropagation,BP)算法的一种多层前馈神经网络,BP神经网络是人工神经网路中最为重要的网络之一,也是目前应用最广泛、发展最成熟的一种神经网络模型。
  2.1输入输出变量的选取
  输入变量的选择是取得良好控制效果的首要环节。输入变量可以是成组的原始数据,也可以是经过预处理的参数或表示某种信号的采样样本。本文选时间,室外温度,室外最高、最低温度,二次网供水温度,二次网供回水温度、控制日的节假日类型八个影响因素作为输入变量。集中供热系统的控制运行方案有多种,对于不同的控制运行方案,可以选择不同的输出变量,本论文选择二次网循环水流量进行控制。
  2.2隐含层数和隐含节点数的确定
  实践证明,采用一层中间层即三层网络已经足够解决供暖系统优化控制这类控制问题了,采用二层以上的隐含层几乎没有任何益处。而且采用越多的隐含层,训练的时间也将会急剧增加,这是因为:
  (1)隐含层越多,误差反向传播的过程计算就会越复杂,训练时间也就急剧增加。
  (2)隐含层增加后,局部最小误差也会增加。所以本文选择一层隐含层。
  至于隐含层节点数的确定也是研究者们经常提及的一个课题,现在普遍认为尚无明确的规则用以确定隐含层中的最佳节点数。Kawashima于1994年推荐隐含层采用2n+1个神经元(n是输入层的维数),本论文输入层维数是7:所以选择隐含层节点数是:15个。所以本文的网络结构是7-15-1结构。
这个家伙什么也没有留下。。。

采暖供热

返回版块

20.38 万条内容 · 571 人订阅

猜你喜欢

阅读下一篇

建筑节能技术在云计算数据中心建设中的应用

在云计算的潮流下,云计算数据中心具有超大规模和降低运维成本等特点。云计算数据中心机房的面积非常大,很多云计算数据中心就是一个单体建筑。同时由于市场竞争的压力,好的云计算数据中心必须是低运维成本的数据中心,如何构造绿色节能的云计算数据中心,也是云计算数据中心建设考虑的一个重点。建筑节能就是节约建筑物的能源消耗,减少能源损失,提高能源利用率。建筑节能技术在满足舒适使用的前提下,采用新型保温围护结构、高效采暖空调、节能照明设备及利用可再生能源以达到节能的目的。

回帖成功

经验值 +10