土木在线论坛 \ 电气工程 \ 电站工程 \ 电子元器件综合知识大全

电子元器件综合知识大全

发布于:2012-12-18 16:13:18 来自:电气工程/电站工程 [复制转发]
第一节、电阻器
1.1 电阻器的含义:在电路中对电流有阻碍作用并且造成能量消耗的部分叫电阻.
1.2 电阻器的英文缩写:R(Resistor) 及排阻RN
1.3 电阻器在电路符号: R 或 WWW
1.4 电阻器的常见单位:千欧姆(KΩ), 兆欧姆(MΩ)
1.5 电阻器的单位换算: 1兆欧=103千欧=106欧
1.6 电阻器的特性:电阻为线性原件,即电阻两端电压与流过电阻的电流成正比,通过这段导体的电流强度与这段导体的电阻成反比。即欧姆定律:I=U/R。
表 1.7 电阻的作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。
1.8 电阻器在电路中用“R”加数字表示,如:R15表示编号为15的电阻器。
1.9 电阻器的在电路中的参数标注方法有3种,即直标法、色标法和数标法。
a、直标法是将电阻器的标称值用数字和文字符号直接标在电阻体上,其允许偏差则用百分数表示,未标偏差值的即为±20%.
b、数码标示法主要用于贴片等小体积的电路,在三为数码中,从左至右第一,二位数表示有效数字,第三位表示10的倍幂或者用R表示(R表示0.)如:472 表示 47×102Ω(即4.7KΩ); 104则表示100KΩ、;R22表示0.22Ω、 122=1200Ω=1.2KΩ、 1402=14000Ω=14KΩ、 R22=0.22Ω、 50C=324*100=32.4KΩ、17R8=17.8Ω、000=0Ω、 0=0Ω.
c、色环标注法使用最多,普通的色环电阻器用4环表示,精密电阻器用5环表示,紧靠电阻体一端头的色环为第一环,露着电阻体本色较多的另一端头为末环.现举例如下:
如果色环电阻器用四环表示,前面两位数字是有效数字,第三位是10的倍幂, 第四环是色环电阻器的误差范围(见图一)
四色环电阻器(普通电阻)
标称值第一位有效数字
标称值第二位有效数字
标称值有效数字后0的个数(10的倍幂)
允许误差




颜 色 第一位有效值 第二位有效值 倍 率 允 许 偏 差
黑 0 0

棕 1 1
±1%
红 2 2
±2%
橙 3 3

黄 4 4

绿 5 5
±0.5%
蓝 6 6
±0.25%
紫 7 7
±0.1%
灰 8 8

白 9 9
―20% ~ +50%

5%


10%

无色 20%

图1-1 两位有效数字阻值的色环表示法
如果色环电阻器用五环表示,前面三位数字是有效数字,第四位是10的倍幂. 第五环是色环电阻器的误差范围.(见图二)
五色环电阻器(精密电阻)
标称值第一位有效数字

标称值第二位有效数字
标称值第三位有效数字
标称值有效数字后0的个数(10的倍幂)
允许误差




颜色 第一位有效值 第二位有效值 第三位有效值 倍 率 允许偏差
黑 0 0 0

棕 1 1 1
1%

红 2 2 2
2%

橙 3 3 3

黄 4 4 4

绿 5 5 5
0.5%

蓝 6 6 6
0.25

紫 7 7 7
0.1%

灰 8 8 8

白 9 9 9
-20%~+50%

±5%

±10%
图1-2 三位有效数字阻值的色环表示法
d、SMT精密电阻的表示法,通常也是用3位标示。一般是2位数字和1位字母表示,两个数字是有效数字,字母表示10的倍幂,但是要根据实际情况到精密电阻查询表里出查找.下面是精密电阻的查询表:
代码 阻值 代码 阻值 代码 阻值 代码 阻值 代码 阻值
code resiscane code resiscance code resiscance code resiscance code resiscance
1 100 21 162 41 261 61 422 81 681
2 102 22 165 42 267 62 432 82 698
3 105 23 169 43 274 63 442 83 715
4 107 24 174 44 280 64 453 84 732
5 110 25 178 45 287 65 464 85 750
6 113 26 182 46 294 66 475 86 768
7 115 27 187 47 301 67 487 87 787
8 118 28 191 48 309 68 499 88 806
9 121 29 0.196 49 316 69 511 89 825
10 124 30 200 50 324 70 523 90 845
11 127 31 3205 51 332 71 536 91 866
12 130 32 210 52 340 72 549 92 887
13 133 33 215 53 348 73 562 93 909
14 137 34 221 54 357 74 576 94 931
15 140 35 226 55 365 75 590 94 981
16 143 36 232 56 374 76 604 95 953
17 147 37 237 57 383/388 77 619 96 976
18 150 38 243 58 392 78 634 96 976
19 154 39 249 59 402 79 649
20 153 40 255 60 412 80 665

symbol A
B C D E F G H X Y Z
multipliers 100 101 102 103 104 105 106 107 10-1 10-2 10-3

1.10 SMT电阻的尺寸表示:用长和宽表示(如0201,0603,0805,1206等,具体如02表示长为0.02英寸宽为0.01英寸)。
1.11 一般情况下电阻在电路中有两种接法:串联接法和并联接法
电阻的计算:

R1
R1 R2
R2
串连: 并联:
R=R1+R2 R=1/R1+1/R2
1.12 多个电阻的串并联的计算方法:
串联:R总串=R1+R2+R3+……Rn.
并联:1/R总并=1/R+2/R+3/R……1/Rn
1.13 电阻器好坏的检测:
a、用指针万用表判定电阻的好坏:首先选择测量档位,再将倍率档旋钮置于适当的档位,一般100欧姆以下电阻器可选RX1档,100欧姆-1K欧姆的电阻器可选RX10档,1K欧姆-10K欧姆电阻器可选RX100档,10K-100K欧姆的电阻器可选RX1K档,100K欧姆以上的电阻器可选RX10K档.
b、测量档位选择确定后,对万用表电阻档为进行校0, 校0的方法是:将万用表两表笔金属棒短接,观察指针有无到0的位置,如果不在0位置,调整调零旋钮表针指向电阻刻度的0位置.
c、接着将万用表 的 两表笔分别和电阻器的两端相接,表针应指在相应的阻值刻度上,如果表针不动和指示不稳定或指示值与电阻器上的标示值相差很大,则说明该电阻器已损坏.
d、用数字万用表判定电阻的好坏;首先将万用表的档位旋钮调到欧姆档的适当档位,一般200欧姆以下电阻器可选200档,200-2K欧姆电阻器可选2K档,2K-20K欧姆可选20K档,20K-200K欧姆的电阻器可选200K档,200K-200M欧姆的电阻器选择2M欧姆档.2M-20M欧姆的电阻器选择20M档,20M欧姆以上的电阻器选择200M档.

全部回复(13 )

只看楼主 我来说两句
  • ccj8989
    ccj8989 沙发
    本人搞功率放大器近20年的业余爱好!基本都是差不多了!对电子电路及单元电路等!
    2012-12-20 15:02:20

    回复 举报
    赞同0
  • yaoguizhong213
    第十三节 单元电路
    13.1 CMOS反相器
      由本书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。
      下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即
    VDD>(VTN+|VTP|) 。

    1.工作原理
      首先考虑两种极限情况:当vI处于逻辑0时 ,相应的电压近似为0V;而当vI处于逻辑1时,相应的电压近似为VDD。假设在两种情况下N沟道管 TN为工作管P沟道管TP为负载管。但是,由于电路是互补对称的,这种假设可以是任意的,相反的情况亦将导致相同的结果。
      下图分析了当vI=VDD时的工作情况。在TN的输出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,叠加一条负载线,它是负载管TP在 vSGP=0V时的输出特性iD-vSD。由于vSGP<VT(VTN=|VTP|=VT),负载曲线几乎是一条与横轴重合的水平线。两条曲线的交点即工作点。显然,这时的输出电压vOL≈0V(典型值<10mV ,而通过两管的电流接近于零。这就是说,电路的功耗很小(微瓦量级)

      下图分析了另一种极限情况,此时对应于vI=0V。此时工作管TN在vGSN=0的情况下运用,其输出特性iD-vDS几乎与横轴重合 ,负载曲线是负载管TP在vsGP=VDD时的输出特性iD-vDS。由图可知,工作点决定了VO=VOH≈VDD;通过两器件的电流接近零值 。可见上述两种极限情况下的功耗都很低。

      由此可知,基本CMOS反相器近似于一理想的逻辑单元,其输出电压接近于零或+VDD,而功耗几乎为零。
    2.传输特性
      下图为CMOS反相器的传输特性图。图中VDD=10V,VTN=|VTP|=VT=
    2V。由于 VDD>(VTN+|VTP|),因此,当VDD-|VTP|>vI>VTN 时,TN和TP两管同时导通。考虑到电路是互补对称的,一器件可将另一器件视为它的漏极负载。还应注意到,器件在放大区(饱和区)呈现恒流特性,两器件之一可当作高阻值的负载。因此,在过渡区域,传输特性变化比较急剧。两管在VI=VDD/2处转换状态。

    3.工作速度
      CMOS反相器在电容负载情况下,它的开通时间与关闭时间是相等的,这是因为电路具有互补对称的性质。下图表示当vI=0V时 ,TN截止,TP导通,由VDD通过TP向负载电容CL充电的情况。由于CMOS反相器中,两管的gm值均设计得较大,其导通电阻较小,充电回路的时间常数较小。类似地,亦可分析电容CL的放电过程。CMOS反相器的平均传输延迟时间约为10ns。

    13.2CMOS逻辑门电路
    1.与非门电路
      下图是2输入端CMOS与非门电路,其中包括两个串联的N沟道增强型MOS管和两个并联的P沟道增强型MOS管。每个输入端连到一个N沟道和一个P沟道MOS管的栅极。当输入端A、B中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B全为高电平时,才会使两个串联的NMOS管都导通,使两个并联的PMOS管都截止,输出为低电平。

      因此,这种电路具有与非的逻辑功能,即
      n个输入端的与非门必须有n个NMOS管串联和n个PMOS管并联。
    2.或非门电路
      下图是2输入端CMOS或非门电路。其中包括两个并联的N沟道增强型MOS管和两个串联的P沟道增强型MOS管。

      当输入端A、B中只要有一个为高电平时,就会使与它相连的NMOS管导通,与它相连的PMOS管截止,输出为低电平;仅当A、B全为低电平时,两个并联NMOS管都截止,两个串联的PMOS管都导通,输出为高电平。
      因此,这种电路具有或非的逻辑功能,其逻辑表达式为
    显然,n个输入端的或非门必须有n个NMOS管并联和n个PMOS管并联。
      比较CMOS与非门和或非门可知,与非门的工作管是彼此串联的,其输出电压随管子个数的增加而增加;或非门则相反,工作管彼此并联,对输出电压不致有明显的影响。因而或非门用得较多。
    13.3.异或门电路

      上图为CMOS异或门电路。它由一级或非门和一级与或非门组成。或非门的输出 。而与或非门的输出L即为输入A、B的异或
    如在异或门的后面增加一级反相器就构成异或非门,由于具有 的功能,因而称为同或门。异成门和同或门的逻辑符号如下图所示。

    13.4 BiCMOS门电路
      双极型CMOS或BiCMOS的特点在于,利用了双极型器件的速度快和MOSFET的功耗低两方面的优势,因而这种逻辑门电路受到用户的重视
    1.BiCMOS反相器

    上图表示基本的BiCMOS反相器电路,为了清楚起见,MOSFET用符号M表示BJT用T表示。T1和T2构成推拉式输出级。而Mp、MN、M1、M2所组成的输入级与基本的CMOS反相器很相似。输入信号vI同时作用于MP和MN的栅极。当vI为高电压时MN导通而MP截止;而当vI为低电压时,情况则相反,Mp导通,MN截止。当输出端接有同类BiCMOS门电路时,输出级能提供足够大的电流为电容性负载充电。同理,已充电的电容负载也能迅速地通过T2放电。
      上述电路中T1和T2的基区存储电荷亦可通过M1和M2释放,以加快
    电路的开关速度。当vI为高电压时M1导通,T1基区的存储电荷迅速消散。这种作用与TTL门电路的输入级中T1类似。同理 ,当vI为低电压时,电源电压VDD通过MP以激励M2使M2导通,显然T2基区的存储电荷通过M2而消散。可见,门电路的开关速度可得到改善。
    2.BiCMOS门电路
    根据前述的CMOS门电路的结构和工作原理,同样可以用BiCMOS技术实现或非门和与非门。如果要实现或非逻辑关系,输入信号用来驱动并联的N沟道MOSFET,而P沟道MOSFET则彼此串联。正如下图所示的
    2输入端或非门。

    当A和B均为低电平时,则两个MOSFET MPA和MPB均导通,T1导通而MNA和MNB均截止,输出L为高电平。与此同时,M1通过MPA和MpB被VDD所激励,从而为T2的基区存储电荷提供一条释放通路。
      另一方面,当两输入端A和B中之一为高电平时 ,则MpA和MpB的通路被断开,并且MNA或MNB导通,将使输出端为低电平。同时,M1A或M1B为T1的基极存储电荷提供一条释放道路。因此 ,只要有一个输入端接高电平,输出即为低电平。

    13.5、CMOS传输门
    MOSFET的输出特性在原点附近呈线性对称关系,因而它们常用作模拟开关。模拟开关广泛地用于取样——保持电路、斩波电路、模数和数模转换电路等。下面着重介绍CMOS传输门。

    所谓传输门(TG)就是一种传输模拟信号的模拟开关。CMOS传输门由一个P沟道和一个N沟道增强型MOSFET并联而成,如上图所示。TP和TN是结构对称的器件,它们的漏极和源极是可互换的。设它们的开启电压|VT|=2V且输入模拟信号的变化范围为-5V到+5V 。为使衬底与漏源极之间的PN结任何时刻都不致正偏 ,故TP的衬底接+5V电压,而TN的衬底接-5V电压 。两管的栅极由互补的信号电压(+5V和-5V)来控制,分别用C和 表示。
      传输门的工作情况如下:当C端接低电压-5V时TN的栅压即为-5V,vI取-5V到+5V范围内的任意值时,TN均不导通。同时,TP的栅压为+5V
    ,TP亦不导通。可见,当C端接低电压时,开关是断开的。
      为使开关接通,可将C端接高电压+5V。此时TN的栅压为+5V ,vI在-5V到+3V的范围内,TN导通。同时TP的棚压为-5V ,vI在-3V到+5V的范围内TP将导通。
      由上分析可知,当vI<-3V时,仅有TN导通,而当vI>+3V时,仅有TP导通当vI在-3V到+3V的范围内,TN和TP两管均导通。进一步分析
    还可看到,一管导通的程度愈深,另一管的导通程度则相应地减小。换句话说,当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管系并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输出门的优点。
      在正常工作时,模拟开关的导通电阻值约为数百欧,当它与输入阻抗为兆欧级的运放串接时,可以忽略不计。
      CMOS传输门除了作为传输模拟信号的开关之外,也可作为各种逻辑电路的基本单元电路。
    13.6 整流电路

    桥式整流电路



    13.7滤波电路


    (a) C型滤波电路 (b) 倒L型滤波电路 (c) Ⅱ型滤波电路
    图1

    (3)几种常见的桥式整流滤波电路:
    A 电容滤波电路:





    B电感滤波电路



    13.8.反馈电路
    1.正反馈:是指反馈回来的信号增强输入信号(常用与振荡电路);
    负反馈:是指反馈回来的信号削弱原输入信号(用与放大电路)。
    2.判别正负反馈的方法——瞬时极性法
    "瞬时极性法"是用来判断正反馈还是负反馈的。我们在放大器输入端的基极施加一个信号电压VI,设某一瞬时该信号的极性为正信号,用"(+)"表示,经三极管V的集电极倒相后变为负信号,用"(一)"来表示。发射极与基极同相位,仍为"(+)"信号,多级放大器在这一瞬时的极性依次类推,假设在这一瞬时反馈电阻RF的反馈信号使输入信号加强,则为正反馈,使得输入信号削弱,则为负反馈。
    4. 负反馈放大电路的四种类型:
    A电压串联负反馈 B 电压并联负反馈
    C电流串联负反馈 D电流并联负反馈
    13.9 放大电路
    三种基本组态的放大电路图:

     共发射极放大电路


    共基极放大电路 共集电极放大电路
    注意:放大电路共发射极时,Ai和Au都比较大,但是输出电压和输入电压的相位相反;共基极时,Ai比较大,但是Au较小,输出电压与输入电压同相,并且具有跟随关系,它可作为输入级,输出级或起隔离作用的中间级;共集电极时,Ai较小,Au较大,输出电压与输入电压同相,多用于宽频带放大等。
    对于多级放电电路:在多级放大器中,由于各级之间是串联起来的,后一级的输入电阻就是前级的负载,所以,多级放大器的总电压放大倍数等于各级放大倍数的乘积,即Au=Au1Au2……Aun。
    注意:若反馈信号取自输出电压信号,则称为电压反馈;若反馈信号取自输出电流信号,则称为电流反馈。(通常,采用将负载电阻短路的方法来判别电压反馈和电流反馈。具体方法是:若将负载电阻 R L 短路,如果反馈作用消失,则为电压反馈;如果反馈作用存在,则为电流反馈。 );
    若反馈信号与输入信号在基本放大电路的输入端以电压串联的形式迭加,则称为串联反馈;若反馈信号与输入信号在基本放大电路的输入端以电流并联的形式迭加,则称为并联反馈。
    13.10.振荡电路
    1、电感三点式振荡器


    考虑L1、L2间的互感,电路的振荡频率可近似表示为
        
    2、电容三点式振荡器

    振荡频率:
    2012-12-18 16:17:18

    回复 举报
    赞同0
加载更多

电站工程

返回版块

5.32 万条内容 · 207 人订阅

猜你喜欢

阅读下一篇

低压开关柜区别及特点 GGD、GCK、GCS、MNS、MCS

低压开关柜区别及特点 GGD、GCK、GCS、MNS、MCS低压开关柜的型号区别及特点目前市场上流行的开关柜型号很多,归纳起来有以下几种型号,现把各种型号的开关柜型号及其优缺点列举如下,供大家参考:一 . 型号GGD、 GCK、GCS、MNS、MCS介绍①GGD系列:l用途GGD型交流低压配电柜适用于变电站、发电厂、厂矿企业等电力用户的交流50Hz,额定工作电压380V,额定工作电流1000-3150A的配电系统,作为动力、照明及发配电设备的电能转换、分配与控制之用。

回帖成功

经验值 +10