土木在线论坛 \ 给排水工程 \ 纯水系统 \ 10种常见的水处理方法

10种常见的水处理方法

发布于:2012-11-17 14:42:17 来自:给排水工程/纯水系统 [复制转发]
. 沉淀过滤法
这是一种最原始的过滤方法,它是依靠水中微粒杂质的自身重量下沉来达到分离的目的。常用于水中杂质颗粒较大的场所,如江河湖水的初步自然澄清过滤。

2. 蒸馏法
蒸馏法是把水加热,变成气体,分出混入气相中的低沸点成分或飞沫成分,低沸点气体放于大气中。不挥发性不纯物残留于液相中,成为浓缩液排出。如此把水精制成高纯度的水。
此法耗电耗水量很大,且使用时需有人看守,使用不方便,现已较少使用。


3. 薄膜微孔过滤(MF)法
薄膜微孔过滤法包括三种形式:深层过滤、筛网过滤、表面过滤。
深层过滤是以编织纤维或压缩材料制成的基质,利用隋性吸附或是捕捉方式来留住颗粒,如常用的多介质过滤或砂滤;深层过滤是一种较为经济的方式,可去除98%以上的悬浮固体,同时保护下游的纯化单元不会被堵塞,因此通常做为预处理。
表面过滤则是多层结构,当溶液通过滤膜时,较滤膜内部孔隙大的颗粒将被留下来,并主要堆积在滤膜表面上,如常用的PP纤维过滤。表面过滤可去除99.9%以上的悬浮固体,所以也可作为预处理或澄清用。
筛网滤膜基本上是具有一致性的结构,就象筛子一般,将大于孔径的颗粒,都留在表面上(这种滤膜的孔量度是非常精准的),如超纯水机终端使用的用点保安过滤器;筛网过滤微孔过滤一般被置于纯化系统中的最终使用点,以去除最后的残留微量树脂片、碳屑、胶体和微生物。


4、活性炭吸附法
活性炭依靠吸附和过滤作用主要去除水中的异色、异味、余氯、残留消毒物等有机物杂质。


5. 电渗析
渗析是一种物理现象。如将两种不同浓度的盐水,用一张渗透膜隔开,浓度高的盐水中的溶质如无机盐离子通过膜向浓度低的盐水中渗透,这个现象就是渗析。这种渗析是由于含盐量浓度不同而引起的,称为浓差渗析。因为是以浓度差作为推动力,扩散速度始终是比较慢的。如果要加快这个速度,就可以在膜的两边加一直流电极。电解质在电场的作用下,会加快迁移的速度,这就称为电渗析。
电渗析耗电量大,且渗析膜片易坏,在反渗透技术出现后已很少使用。


6. 离子交换(IX)法
离子交换法的原理是将原水*中的无机盐阴阳离子如钙离子Ca2+、镁离子Mg2+、硫酸盐SO42-、硝酸盐NO3-等,通过与离子交换树脂交换,使水中的阴、阳离子与树脂中的阴阳离子相交换,从而使水得到软化或纯化。
注1:原水是指相对于每一个过滤单元而言,其进水就称为原水。
离子交换树脂*分为阴离子树脂(R-OH)和阳离子树脂(H-R和Na-R)两种,其中阳离子树脂根据其活性基团的不同而分为钠型树脂(Na-R)和氢型树脂(H-R)。钠型树脂常用于水质软化,氢型树脂常和阴离子树脂R-OH一起配合使用,以去除水中的无机盐阴阳离子,使水质纯化为超纯水。
注2:离子交换树脂指离子交换树脂的高分子基团通常以R表示。
纯化过程:
如以H-R代表氢型阳树脂,其纯化水质的交换过程如下:
2H-R+Ca2+ = R2Ca + 2H+
2R-OH+ SO42- = R2SO4 + 2OH-
以上过程中生成的H+ 和OH- 再反应:
H+ + OH- =H2O
即水质通过离子交换器后,水中的无机盐阴阳离子被置换成H2O,达到纯化的目的。
软化过程:
如以Na-R代表钠型树脂,其交换过程如下:
2Na-R+Ca2+=R2Ca+2Na+
2Na-R+Mg2+=R2Mg+2Na+
即水质通过钠离子交换器后,水中的Ca2+、Mg2+被置换成Na+,达到软化的目的。
再生过程:
离子交换树脂使用一段时间后,树脂中的离子被交换完全后,达到饱和程度,失去离子交换能力,此时就需要对树脂进行再生。
软化树脂需要用Nacl即食盐溶液进行再生,再生过程的化学反应与上述软化过程的离子交换反应正好相反。
纯化水用阳树脂需要用酸进行再生,阴树脂需要用碱进行再生。再生过程的化学反应与上述纯化过程的离子交换反应正好相反。

7. 超过滤(UF)法
微孔薄膜是依其过滤孔径的大小来去除微粒,而超滤(UF)薄膜则像一个分子筛,它以尺寸为基准,让溶液通过极微细的孔,以达到分离溶液中不同大小分子之目的。
超滤膜是一种强韧、薄、具有选择性的通透膜,通常认为其过滤孔径约为0.01μm,可截留某种特定大小以上的分子,包括:胶质、微生物和热源。较小的分子,例如:水和离子,都可通过滤膜。
超滤法常用于果汁浓缩、中草药提取、反渗透的预处理、超纯水的终端保安过滤等。

8.反渗透(RO)法
一种高新膜分离技术。它是以压力为推动力,利用反渗透膜只能透水而不能透过溶质的选择性,从含有各种无机物、有机物、微生物的水体中,提取纯水的物质分离过程。反渗透膜的孔径小于10埃(1埃等于10-10米),具有极强的筛分作用,其脱盐率高达99%,除菌率大于99.5%。可去除水中的无机盐、糖类、氨基酸、细菌、病毒等杂质。现已广泛应用于海水的淡化处理、纯净水的生产,超纯水的制备、及其它以细菌、热原、胶体、微粒和有机物为去除目的的先进工艺。
如果以原水水质及产水水质为基准,经过适当设计后,RO是将自来水纯化的最经济的有效方法,同时也是超纯水系统最好的前处理方法。

9.紫外线(UV)、臭氧灭菌法
紫外灯所放射出来的254nm的紫外线是一种有效的杀菌方法,因为细菌中的DNA及蛋白质会有吸收紫外线导致死亡。
紫外线灭菌法
臭氧灭菌法:采用臭氧发生器产生臭氧,加入纯水中,灭菌效果极好。

10、EDI法
一种新的去离子水处理方法。又称连续电除盐技术,EDI装置将离子交换树脂充夹在阴/阳离子交换膜之间形成EDI单元。这种方法不需再用酸碱对树脂进行再生,环保性好。现已广泛应用

全部回复(6 )

只看楼主 我来说两句
  • lsybox
    lsybox 沙发
    其实应该分两大类,物理法和化学法

    算上污水的话还有生化法
    2013-11-14 14:30:14

    回复 举报
    赞同0
  • tydftyydf54853
    多谢楼主分享 学习使人进步:):@:o:(
    2013-11-07 11:25:07

    回复 举报
    赞同0
加载更多
这个家伙什么也没有留下。。。

纯水系统

返回版块

6.51 万条内容 · 262 人订阅

猜你喜欢

阅读下一篇

纯水技术——树脂进行离子交换反应的性能和再生问题

一、交换能力 氢型阳离子交换树脂在水中可解离出氢离子(H +),当遇到金属离子或其它阳离子,就发生互相交换作用,但交换后的树脂,就不再是氢型树脂了。例如,当水中的阳离子如钙离子、镁离子的浓度相当大时,磺酸型的阳离子交换树脂中的氢离子,可和钙、镁离子进行交换,而形成「钙型」或「镁型」的阳离子交换树脂,如下式: 2R-SO3H + Ca 2+ → (R-SO3)2Ca + 2H + (钙型强酸性阳离子交换树脂) 2R-SO3H + Mg 2+ → (R-SO3)2Mg + 2H+(镁型强酸性阳离子交换树脂)氢型阳离子交换树脂的交换能力与被交换的阳离子的价数有密切关系。在常温下,低浓度水溶液中,交换能力随离子价数增加而增加,即价数越高的阳离子被交换的倾向越大。此外,若价数相同,离子半径越大的阳离子被交换的倾向也越大。如果以自来水中经常出现阳离子列为参考对象,则氢型阳离子交换树脂的交换能力顺序可表示如下: 强酸性:Fe 3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+>H+ 弱酸性:H+>Fe3+>Fe 2+>Mn 2+>Ca 2+>Mg 2+>K+>NH 4+>Na + 由上述交换能力顺序可知:强酸性与弱酸性阳离子交换树脂的母体,对阳离子交换能力顺序完全相同,唯一的差异是:两者对H+的交换能力不同,强酸性对氢离子的亲和力最弱,弱酸性对氢离子的亲和力最强,这个特性可能会深深影响它们在水草缸的作用与功能。 虽然氢型弱酸性阳离子交换树脂对氢离子的亲合力最强,但氢离子(H + )与氢氧离子(OH - )结合成水(H2O)的亲合力更强,所以在碱性水质中,弱酸性阳离子交换树脂中的H+会快速被OH-所消耗,OH-主要来自KH硬度(HCO3-)的水解反应: HCO3- + H2O ←→ H2CO3 +OH- H+所遗留之「活性位置」再改由其它阳离子如Fe 3+>Fe 2+>Mn2+>Ca2+>Mg2+ ……等依序取代,一直持续到HCO3-完全被消除为止(KH=0)。因此弱酸性阳离子交换树脂的主要作用区间是在于pH=5 ~ 14的水质。由于HCO3-为暂时硬度的阴离子,因此当HCO3-完全被消除后,它的「当量阳离子」,如如钙、镁等离子也同时完全被取代,故能消除所有暂时硬度的「当量阳离子」。 氢型强酸性阳离子交换树脂对氢离子(H+)的亲合力最弱,使它在任何pH之下,它都具有交换能力,因此可以完全除去GH硬度(暂时硬度及永久硬度)。

回帖成功

经验值 +10