土木在线论坛 \ 建筑设计 \ 建筑资料库 \ 超大型船舶推进轴系

超大型船舶推进轴系

发布于:2011-03-17 17:09:17 来自:建筑设计/建筑资料库 [复制转发]
近年来,随着新一代巨型超级油船VLCC和超大型油船ULCC出现,轴系的刚性增加,船体的柔性增大,使得轴系的校中非常困难,传统的轴系校中方法难以适应轴系校中的要求,因此,有必要研究适用于超大型船舶轴系校中的计算方法、测量手段和安装检验准则。作者在查阅国内大量文献资料的基础上,提出了超大型船舶推进轴系弹性校中的概念,对其理论进行了系统深入地研究,建立了轴系弹性校中计算模型,在国内率先开发了具有自主知识产权的弹性校中计算软件,通过在实际中的应用,能满足超大型船舶轴系校中的需要。 论文对超大型船舶推进轴系弹性校中计算理论进行了系统深入地研究。①根据超大型船舶推进轴系设计、安装检验的需要,提出了推进轴系弹性校中的概念,系统地研究了弹性校中计算的有限元法、传递矩阵法和三弯矩方程法等,通过改进使三种方法均能适用于超大型船舶推进轴系弹性校中计算的需要。同时,提出了弹性校中计算是多因素综合计算的结果,对超大型船舶推进轴系校中衡准应以弹性校中计算的结果为基础。在系统研究弹性校中计算理论的基础上,基于Visual Basic.Net面向对象的编程工具,开发了具有自主知识产权的超大型船舶轴系弹性校中计算软件。软件具有界面友好,操作简便,通用性强,便于二次开发等特点,能满足弹性校中计算的需要。②根据流体润滑动力学理论以及国内外学者所给出的近似计算公式,结合轴系弹性校中计算有限元模型,提出了一种确定轴系在实际运转过程中艉管轴承支承点位置以及轴心空间位置的计算方法,有利于准确地确定轴系在实际工作过程中轴系中心线的位置和轴承支反力:该方法简单易行,也可用于其它轴承支承位置的确定。针对大型船舶尾管轴承工作特点,基于流体润滑动力学理论,建立了艉管轴承的非线性模型。讨论了轴承油膜刚度的数值计算方法,建立了艉管轴承的动力润滑模型,给出了求解油膜压力分布的有限元方法,导出了油膜主要特征参数的计算公式。③根据螺旋桨水动力计算的传统方法一拟定常理论,同时结合螺旋桨设计计算理论,应用面元法对螺旋桨进行水动力计算,其计算结果与实验结果更接近,计算精度高,计算方便,能够较好的运用于弹性校中计算中水动力的计算。④分析研究了弹性校中计算最优化方法,建立了弹性校中优化计算模型,并将遗传算法应用于弹性校中优化计算,根据弹性校中计算的特点,对标准遗传算法进行了改进,将优选技术、非线性排名选择机制与基于实数编码的遗传算法相结合,建立了遗传算法优化模型。与标准遗传算法相比,改进后的优化算法具有
电加热器
The alignment of the propulsion shaft is the vital part of the design and installation of the shafting. A misalignment of the shaft is highly harmful since it may affect the vibration behavior and the strength of the shafting, or even more destroy the main engine and the gearbox. Early in the 1960’s, the foreign scholars did some researches on the theory and the testing analysis of the shaft alignment and got some achievements, which can meet the need of the design of the ship at that time. But with the appearance of the newly Very Large Crude Carrier (VLCC) and Ultra-Large Crude Carrier (ULCC), the hull becomes relatively more flexible when compared with the rigidity of the shafting, it made the alignment highly difficult and complex. This the traditional alignment method can’t meet the requirement of the shafting alignment any more. As a result, the new calculation method, testing measure and installation checking criterion of the shafting alignment are worth studying now.After studying lots of the literatures about the design, manufacture, installation of the propulsion shaft home and abroad, comprehensively considering the hull deflection, propeller dynamic force, bearing rigidity, oil film rigidity, environment temperature, crankshaft model of the main engine and so on, the elastic alignment calculation model of the shafting of the huge ship is established. Meanwhile, the relative calculation methods, such as the finite elements method (FEM), the transition matrix method and the three bending moment method of the elastic alignment are discussed in detail. At last, a general shaft alignment calculation software, which satisfies all the needs of the huge ship’s shaft alignment is developed.The main factors that effect the calculation model of the elastic alignment have been further discussed in this paper. ①Considering the feature of the stern-tube bearing of the huge ship, and on the base of the hydrodynamic theory of lubrication, a non-linear model of the stern-tube bearing is built, then an FEM approach of computing the pressure distribution of the oil film and the relationship of the main oil-film characteristic parameters are presented. ②According to the traditional calculation method of propeller’s dynamic force, the surface element method is applied to calculate the propeller’s dynamic force, associating with the calculationmethod of the aviation and space-flight propeller. The numerical result is closer to the experimental result. So it is more precise, convenient and can be used in the dynamic force calculation of the elastic alignment.(3)The optimum method of the elastic alignment is analyzed, then the calculation model of elastic alignment is established and the genetic optimum arithmetic is used in the elastic alignment. According to the calculating characteristic of elastic alignment, the genetic arithmetic and the optimum genetic model are improved, considering best choose technology, non-linearity rank choose mechanism and real number coding method. Compared with the standard genetic arithmetic, the improved optimum calculation is better in quality and efficiency.?According to the feature of the main propulsion shafting of the huge ship, an simplified calculation model, namely the equivalent shaft of crankshaft alignment calculation of the large low-speed main engine, is proposed firstly. Then the numerical result is gained by using this model and compared with the finite element numerical calculation result, the error is in the allowable range, which proves the correctness and feasibility of the approach. It meets the requirement of the elastic alignment and can be used expediently.(§)Compared all the checking methods used in the shaft installation, the advantages of strain-gage method are described. It can be used to check the shaft state constantly with the change of the rigidities. On the basis of the measured strain and the Riccati matrix method, the strain of the shaft and the bearing reaction can be checked, so as to satisfy the requirement of the shaft alignment by the iterative method.(6)Based on the previous studies, the elastic alignment software is developed. Then the elastic alignment calculation of one actual VLCC is carried out by using the software. At last some tentative checking rules of the elastic alignment are proposed in this paper.
这个家伙什么也没有留下。。。

建筑资料库

返回版块

13.59 万条内容 · 181 人订阅

猜你喜欢

阅读下一篇

桩基厚承台的试验研究

桩基以其承载力高、能减少地基不均匀沉降等优点,在工程上得到广泛的应用。承台作为桩基的重要组成部分,起着承上启下的作用,在设计中应予重视。因此,对桩基承台的受力机理、传力模型及其承载力问题的研究具有重要的理论意义和工程参考价值。 传统桩基承台的内力计算都是建立在梁、板弯曲计算理论基础之上,对承台的受剪、受冲切、局部受压承载力的验算基本沿用一般梁、板等受弯构件的计算方法。这种设计方法只考虑承台某一指定截面上的受力,而没有考虑承台内部的完整力流(本文试验探索性测定了厚承台内部完整的力流分布)。随着国内外学者对承台研究的深入,人们发现平截面假定对承台尤其是厚承台不适用,于是提出了各种厚承台的传力模型,如拉压杆模型、空间桁架模型以及空腹式模型。各国关于承台设计方法的总体研究趋势,虽已逐渐由弯曲理论向桁架理论靠拢,但建立桩基承台合理的传力模式仍缺乏足够的试验基础和理论依据。 本课题是继武汉工业大学三桩、四桩承台之后进行的二桩、四桩、五桩钢筋混凝土承台试验研究。并将钢纤维混凝土这种新型的复合材料应用于钢筋混凝土承台,按l:5缩尺模型共制作47个承台试件,其中二桩承台30个、五桩承台15个和四桩承台2个。进行了静荷载试验和有限元非线性分析。三次所做的试验研究和理论分析均属于《纤维混凝土结构设计与施工规程》(CECS38:92)的修订课题,旨在利用钢纤维混凝土材料优良的抗拉、抗剪、抗弯和抗冲切性能,改善桩基承台的受力特性,拓展钢纤维混凝土的工程应用范围。 在分析比较国内外有关承台设计计算方法理论体系的基础上,建立了桩基厚承台非线性有限元计算力学模型,运用有限元分析软件,对桩基厚承台进行了从加荷、开裂、屈服直至破坏的全过程非线性有限元计算,分析了承台的裂缝扩展情况、应力分布规律和传力机理,为桩基承台传力模型的建立提供理论计算依据。根据基于空间桁架模型的试验研究分析结果与有限元分析结果可以得出,桩基厚承台的传力机理更符合空间桁架模型,即以承台底部桩顶处水平受力钢筋条带为拉杆,柱头至桩顶区域的混凝土为斜压杆的空间桁架。 分析研究桩基承台的破坏形态随着距厚比w/h0的变化趋势。当承台w/h0较大时,承台的极限承载力是以柱和角桩连线范围内混凝土或钢纤维混凝土的劈裂破坏为控制条件;当承台w/h0较小时,承台的极限承载力则是以柱和角桩连线范围内混凝土形成的斜压杆的剪切破坏或角桩的冲切破坏为控制条件;研究表明,厚承台破坏时,底部纵向钢筋并非全部均匀受力,而是集中在桩径范围内布置的钢筋受力大且

回帖成功

经验值 +10