前言
“
厌氧生物处理技术
厌氧生物技术发展现状及各工艺优缺点分析
厌氧生物处理法是在断绝氧气的条件下,利用厌氧微生物和兼性厌氧微生物的作用,将废水中的各种复杂有机物转化成比较简单的无机物(如二氧化碳)或有机物(如甲烷)的处理过程,也称为厌氧消化。
厌氧生物降解过程一般分为四个阶段:水解、酸化、产乙酸和产甲烷阶段。其中产甲烷阶段是整个厌氧过程最为重要的阶段,也是厌氧降解过程的限速阶段。
污水厌氧生物处理技术一般在中温条件下进行,pH 维持在大约7.5左右,最适宜产甲烷微生物生长。厌氧生物处理工艺的改进基本都围绕着产甲烷过程,主要关注如何提高系统内传质效率和促进产甲烷微生物生长,从而提高甲烷产率。主要手段包括在系统中优化操作参数,添加载体,改善水力条件,提高污泥停留时间等。
典型工艺类型
1)完全混合式厌氧消化罐(CSTR)
2)升流式厌氧污泥床(UASB)
UASB反应器污泥床区主要有沉降性能良好的厌氧颗粒污泥组成,浓度可达到50-100g/L或更高。沉淀悬浮区主要靠反应过程中产生的气体的上升搅拌作用形成,污泥浓度较低,一般在5-40g/L范围内。在UASB反应器中能得到一种具有良好沉降性能和高产甲烷活性菌的颗粒厌氧污泥,因而相对其他的反应器有一定优势:颗粒污泥的相对密度比人工载体小,靠产生的气体来实现污泥与基质的充分接触,省却搅拌和回流污泥设备和能耗;颗粒污泥沉降性能良好,避免附设沉淀分离装置和回流污泥设备:反应器内不需投加填料和载体,提高容积利用率。
3)厌氧折流板反应器(ABR)
ABR是McCarty和Bachmann等人于1982年,在总结了第二代厌氧反应器工艺性能的基础上,开发和研制的一种新型高效的厌氧生物处理装置。其特点是:反应器内置竖向导流板,将反应器分隔成几个串联的反应室,每个反应室都是一个相对独立的上流式污泥床系统,其中的污泥以颗粒化形式或絮状形式存在。一般而言,在处理低浓度废水时,不必将反应器分隔成很多隔室,以3~4个隔室为宜;而在处理高浓度废水时,宜将分隔数控制在6~8个,以保证反应器在高负荷条件下的复合流态特性。
4)厌氧膨胀床(ESGB)
20世纪90年代初,荷兰Wageningen农业大学开始了厌氧膨胀颗粒污泥床(简称EGSB)反应器的研究。Lettinga教授等人在利用UASB反应器处理生活污水时,为了增加污水与污泥的接触,更有效地利用反应器的容积,改变了UASB反应器的结构设计和操作参数,使反应器中颗粒污泥床在高的液体表面上升流速下充分膨胀,由此产生了早期的EGSB反应器。EGSB反应器实际上是改进的UASB反应器,区别在于前者具有更高的液体上升流速,使整个颗粒污泥床处于膨胀状态,需要反应器具有较大的高径比。三相分离器是EGSB反应器最关键的构造,能将出水、沼气和污泥三相有效分离,使污泥在反应器内有效滞留;出水循环部分是为了提高反应器内的液体表面上升流速,使颗粒污泥与污水充分接触,避免反应器内死角和短流的产生。
5)内循环厌氧反应器(IC)
内循环(IC)厌氧反应器也是在UASB反应器基础上发展起来的高效反应器。其依靠沼气在升流管和回流管间产生的密度差在反应器内部形成流体循环。IC内循环厌氧反应器为荷兰帕克公司的专利产品,目前帕克公司在全球有300多台IC反应器得以应用。IC反应器实际上由两级UASB构成,底部UASB负荷高,顶部负荷低。因为在一级分离时收集了大量沼气,其对废水的扰动减少,使得在二级三相分离中得到更好的气、水、泥分离效果。二级分离的lC反应器确保了最佳的污泥停留时间,这样对于处理一些化工废水有利,因为这些废水厌氧污泥产量很小。IC反应器具有一个自调节的内循环结构,循环废水与原水混合将稀释进水浓度。内循环作用所带来的能量使得泥水在底部混合更加充分,从而污泥活性也得到增加。IC反应器的容积负荷(15-30kgCOD/m3)为UASB(7-15kgCOD/m3)的两倍。该反应器的有机负荷达到UASB反应器的2~4倍。另外,IC厌氧反应器具有高径比大、上流速度快、有机负荷高、传质效果好等优点,其去除有机物能力远超过UASB等二代厌氧反应器。
6)厌氧膜生物反应器(AnMBR)
AnMBR将厌氧工艺与膜分离系统结合,使得水力停留时间HRT与污泥停留时间SRT分开,SRT均超过30天,有助于促进厌氧微生物生长,且占地小。AnMBR首次被提出是在上世纪70年代末,然而由于膜污染问题严重,发展缓慢。近些年随着膜技术的发展,投资和运行成本下降,且2011年斯坦福大学的Mccarthy教授等人提出厌氧MBR将会是实现污水处理厂能量平衡的重要工艺,AnMBR技术重回人们视野,引起了广泛关注。日本在厌氧MBR实际应用上起步较早,早在2000年就有了第一个实际运行的项目。截止2008年8月,该公司在日本已经运行了14个厌氧MBR实际工程项目,包括酿酒废渣,餐厨垃圾,沙拉酱生产污水以及污泥等。
各工艺优缺点及应用分析
“
好氧生物处理技术
好氧生物技术发展现状及各工艺优缺点分析
好氧生物处理就是在充分供氧或者供气的条件下,借助好氧微生物(主要是好氧细菌)或兼性好氧微生物,将污水中有机物氧化分解成较稳定的无机物的处理过程。处理过程中,废水中的一部分有机物在细菌生命活动过程中被同化、吸收,转化成增殖的细菌菌体部分,另一部分有机物则被氧化分解成简单的无机物(如二氧化碳、水、硝酸根离子等),并释放能量供细菌等微生物生命活动的需要。
目前常用的好氧处理工艺主要有接触氧化工艺、循环式SBR工艺、MBR工艺等。?
1)接触氧化工艺
生物接触氧化法是在生物滤池的基础上,通过接触曝气形式改良、演变出的一种生物膜处理技术。它具备生物膜法的基本特点,既可利用附着在填料表面上的微生物群体对水中的污染物进行吸附、氧化,以达到去除污染物的目的,又与其它生物膜法有所区别:
(1)反应器内的填料全部浸没在废水中,以供微生物栖息生长,故又称淹没滤床反应器;
(2)供氧方式与强度不同,采用机械设备向废水中充氧,不同于生物滤池靠自然通风供氧,氧气的传质速率高,提高生物降解效率。
2)循环式SBR工艺
间歇式活性污泥法或序批式活性污泥法简称SBR工艺,是近几十年来活性污泥处理系统中较引人注目的一种废水处理工艺。该工艺集缺氧、曝气、沉淀、出水于同一生物池中,通过控制系统在该生物池内交替完成不同的反应过程。其生物碳氧化硝化原理与推流式活性污泥法相同,具有成熟的运转经验和节省占地和构筑物的显著特点。? 循环式SBR工艺是SBR的一个种变型工艺,它与ICEAS法非常近似。其主体构筑物由预反应池(选择池)和SBR池串联组成,在SBR池中充氧曝气设备、滗水器和污泥泵,污泥泵用于回流污泥至厌氧池和排放剩余污泥。与传统的SBR工艺相比,循环式SBR运行方式为连续进水(沉淀期和排水期仍保持进水),间歇排水,没有明显的反应阶段和闲置阶段。这种系统在处理工业废水方面比传统的SBR工艺费用更省、管理更方便、占地更少。该工艺通常水力停留时间较长,工艺设施简单,目前在国内外已得到广泛应用。?
3)MBR工艺
即膜——生物反应器工艺,是膜分离技术与生物技术有机结合的新型废水处理技术。它利用膜分离设备将生化反应池中的活性污泥和大分子有机物质截留住,省掉二沉池。活性污泥浓度因此大大提高,水力停留时间和污泥停留时间可以分别控制,而难降解的物质在反应器中不断反应、降解。因此,膜——生物反应器工艺通过膜分离技术大大强化了生物反应器的功能。
各工艺优缺点及应用分析
发展趋势 ?
在实际生产应用中,由于两种方法都有一定的缺点和优势,一般是将两种方法组合在一起的方法来进行生产和应用。目前,最先进的处理模式是,通过改变微生物的种群,人工添加一些产生絮凝作用的微生物菌群,不管是在厌氧阶段还是在好氧阶段,通过适时添加相应的微生物絮凝剂(如红平红球菌等),不仅加快了各个过程的反应时间,最重要的是减少了沉降时间,同时减少了絮凝剂法国爱森聚丙烯酰胺的用量,降低了药剂成本;还有一个趋势是,在污水处理的最后阶段,添加一些高分子的生物絮凝剂,比如聚谷氨酸,聚胱氨酸等可以生物降解的絮凝剂,避免了污泥的二次污染,同时节省了污泥处理成本。
0人已收藏
0人已打赏
免费2人已点赞
分享
水处理
返回版块42.86 万条内容 · 1491 人订阅
阅读下一篇
【干货】硝化系统是如何崩溃的?要说这活性污泥的硝化系统崩溃啊,那可真是污水处理厂里的“老大难”,有时候前一天还好好的,第二天数据一出来,氨氮指标噌噌往上涨,简直能把运营师傅们急得团团转。这硝化系统就像个娇气的小姑娘,稍微有点不舒坦就“罢工”,咱们今天就来掰扯掰扯,它到底是怎么一步步“崩”掉的。 先得说说这硝化系统的“核心员工”——硝化细菌。这群小家伙看着不起眼,却是处理氨氮的主力军,分两类:一类是把氨氮变成亚硝酸盐的,叫亚硝酸菌;另一类是把亚硝酸盐变成硝酸盐的,叫硝酸菌。它们俩就像流水线上的工人,得配合默契才能把活儿干好。可这俩菌有个共同的毛病:“怕冷怕饿还怕累”,环境稍微不对劲,立马就撂挑子。
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳资料不错,学习了,谢谢楼主分享
回复 举报