喘振是 离心式压缩机 本身固有的特性,而造成喘振的唯一直接原因是进气量减小到一定值。
当气量减小到一定程度时,会出现旋转脱离,如这时进一步减小流量,在叶片背面将形成很大的涡流区域,气流分离层扩及整个通道,以至充满整个叶道,而把流道阻塞,气流不能顺利的流过,这时流动严重恶化,压缩机的出口压力会突然大大下降,由于压缩机总是和管网系统联合工作,这时管网中的压力不会马上减低,于是管网中的气体压力就会大于压缩机的出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降到低于压缩机的出口压力为止,这时倒流停止,压缩机又开始向管网供气,经过压缩机的流量又增大,压缩机又恢复到正常工作。但当管网中的压力恢复到原来压力时,压缩机的流量又减少,系统中的气流又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象就称作“喘振”。
喘振现象不但和压缩机中严重的旋转脱离有关,还和管网系统有关。管网的容量越大,则喘振的振幅越大,频率越低。喘振的频率大致和管网容量的平方跟成反比。
机组喘振时,压缩机和其后的管道系统之间产生了一种低频高振幅的压力波动,整个机组发生强力的振动,发出严重的噪音,调节系统也大幅度的波动。一般根据下列方法判断是否进入喘振工况。
2.1 监测压缩机出口管道气流噪音。正常工况时出口的声音是连续且较低的。而接近喘振时,整个系统的气流产生周期性的振荡,因而在出口管道处声音是周期性的变化,喘振时,噪音加剧,甚至有爆音出现。
2.2 观测压缩机流量及出口压力的变化。离心式压缩机稳定运行时其出口压力和进口流量变化是不大的,是脉动的,当接近或进入喘振工况时,二者的变化很大,发生周期性大幅度的脉动。
2.3 观测机体和轴振动情况。当接近或进入喘振工况时,机体和轴振动都发生强烈的振动变化,其振幅要比平常运行时大大增加。
喘振是离心式压缩机性能反常的一种不稳定运行状态。发生喘振时,表现为整个机组管网系统气流周期性的振荡。不但会使压缩机的性能显著恶化、气流参数(压力、流量)产生大幅度脉动、大大加剧了整个压缩机的振动,还会使压缩机的转子及定子元件经受交变动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子及定子元件相碰、压送气体外泄、引起爆炸等恶性事件,因此在操作中必须避免在喘振工况下运行。
实际运行中引起压缩机喘振的原因很多,但基本原因上不外乎下述两种:
第一种:实际运行流量小于喘振流量,诸如生产减量过多、吸入气源不足、入口过滤器堵塞、管道阻力大、叶轮通道或气流通道堵塞等。
第二种:压缩机的出口压力低于管网压力。诸如管网阻力增大、进气压力过低、压缩机转速变化等。压缩机的出口压力低于管网压力,就会导致压缩机的运行工作点向小流量区域移动,从而进入喘振工况。这与前面提高的“造成喘振的唯一直接原因是进气减小到一定值”并不矛盾。
由于对每一转速,压缩机都有对应的喘振流量,小于喘振流量,压缩机即发生喘振,我们将各转速下所发生的喘振的点连接起来(特性曲线上的喘振点连接起来),即可以得到一曲线,即为压缩机的喘振曲线。
因此,千万不要让压缩机在喘振区内运行。这将通过防喘振控制系统来实现。
喘振曲线通常呈抛物线形,而考虑了防喘振裕度后,就可以在其右边画出一条与喘振曲线相近的一条线,这就是保护曲线。保护曲线没有必要与此喘振曲线完全相似,或由喘振曲线平移来获得,而只要能保证压缩机在正常运转范围内有合适的裕度即可。这就使得防喘振控制系统仪表的配置和选用变得极为简单,并更具合理性。
在某一转速下,压缩机的实际流量与该转速下的喘振流量之比叫喘振裕度。裕度太大,则功率耗量增加,经济性差,太小则离喘振点太近,安全性差。一般防喘振裕度在110%~125%左右,在决定裕度大小时,还应把调节仪表的误差因素考虑进去。
转自网络,版权属于原作者,供学习交流。
0人已收藏
0人已打赏
免费3人已点赞
分享
暖通资料库
返回版块25.45 万条内容 · 677 人订阅
阅读下一篇
压差控制系统工作原理、传感器安装图解压差控制系统主要由压差测控器 (也叫压差控制器、余压探测器、压力传感器等)、 气压采集管、风阀控制箱、带电动执行器的 旁通阀(也叫电动对开多叶调节阀)及气管末端面板 (可选)组成。主要用于辅助正压送风系统对高层建筑防烟楼梯间/走道、前室(或合用前室)/走道进行余压值监测与控制。 压差测控系统工作原理如下图:
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳分析的很到位,谢谢楼主分享,学习了
回复 举报