厌氧沼渣资源化的重要方式是通过堆肥生产有机肥,目前主要针对农作物秸秆、畜禽粪污、餐厨垃圾、市政污泥等有机废弃物的厌氧沼渣堆肥效果进行了研究: 禽畜粪便沼渣堆肥应用主要问题在于盐含量高达1%,且重金属Cu、Zn、As超标频率高;餐厨垃圾沼渣堆肥应用主要问题在于盐含量高达2%;市政污泥沼渣堆肥应用主要问题在于As、Cr、Cu、Zn普遍超标。然而,厨余垃圾为生活垃圾分类产物,杂物含量是影响其沼渣堆肥应用的重要影响因素,对此目前缺乏研究。
另外,由于厨余垃圾和农作物秸秆、畜禽粪污、餐厨垃圾、市政污泥等有机固废相比,杂物含量高、杂物种类多,需要对堆肥进行后处理, 而对后处理效果尚无相关报道。
因此,本研究针对我国某一典型城市的厨余垃圾处理工程案例进行调研,分析进料、沼渣、堆肥的物理组成特性,明确杂物去除效率,研究堆肥前后植物毒性、生物稳定性、溶解性物质特征,为厨余垃圾消化残余物处理工艺优化提供参数参考。
1. 案例简介和物料来源
调研的厨余垃圾处理工程案例具体工艺和采样点见图1。采集原生厨余垃圾、一级沼渣、二级沼渣以及堆肥筛分产品(以下简称“堆肥”),并按CJ/T313—2019生活垃圾采样和分析方法规定进行样品采集。
2. 测定分析方法
TS、VS及物理组分依据CJ/T313—2019中重量法测定。生物稳定性采用四日好氧呼吸速率指数(AT 4 )表征,并参照德国2001年《Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste-Treatment Facilities》法令规定测定。
植物毒性采用种子发芽率(GI)表征,并依据CJJ52—2014生活垃圾堆肥处理技术规范规定测定,浸提液按照固液比1:10(样品干基质量/蒸馏水体积)制取,选用萝卜种子测定;同步测定浸提液pH、溶解性氨氮( NH 4 + -N )、硝态氮( NO 3 - -N )、COD和BOD。pH采用玻璃电极法测定, NH 4 + -N 和 NO 3 - -N 采用HACH试剂比色法测定,COD、BOD分别采用HACHCOD测定仪、自动测定仪(OxiTop IS 12,WTW,Germany)测定。
3. 数据处理与分析方法
数据分析及绘图分别利用Excel和OriginPro软件平台完成。
1. 物理组成特征
原生厨余垃圾、一级沼渣、二级沼渣和堆肥的物理组成特征如表1所示。我国厨余垃圾分类处于起步阶段,除上海等极少数城市正确投放率高,杂物含量仅为10%,其余大部分城市目前分类收集的厨余垃圾杂物含量仍然较高,一般约25%,如孙广雨报道的武汉厨余垃圾含杂率约25.8%,与本研究调研厨余垃圾含杂率 27.5%相近。
表1 物料物理组成特征
另外,根据案例统计数据,一级沼渣获得量约为消化残余物总量的25%,二级沼渣获得量约为消化残余物总量的10%,则消化残余物TS和VS分别约为13.3%和54.1%,其他、木竹类、橡塑类、玻璃、石头、贝骨占比分别为72.9%、6.5%、3.0%、3.4%、0.9%、13.1%。根据各类物料比例可知,经过预处理, 橡塑类、金属类、纺织物被大量去除,但硬性易碎物料(玻璃、石头、贝骨)和长纤维状物料(木竹)经过预处理和厌氧发酵反而有所富集,残余物中干基比例增加。
同时,消化残余物经过三级筛分,一级沼渣中杂物含量较高,约32%。二级沼渣中杂物含量较低,<1%。但二级沼渣的VS较低(较一级沼渣低16%),含水率高(较一级沼渣高23.5%),整体性状黏稠不透气,若用二级沼渣堆肥需要添加秸秆等调理剂,调整C/N为20~30,同时增加其透气性,降低含水率。
一级沼渣经过堆肥和筛分(15mm)处理后,含水率和杂物含量(0.5%)明显降低,基本满足GB/T33891—2017绿化用有机基质中开放绿地和林地用有机基质含水率≤40%、有机质≥25%、塑料≤0.5%、玻璃和金属≤2%的要求。因此, 一级沼渣好氧堆肥降低含水率后筛分效果良好,但也需注意获得的堆肥产品中仍然存在玻璃、石头等尖锐物,需充分考虑其应用过程中人员接触问题,防止尖锐物对接触人员造成物理性损伤。
2. 生物稳定性
生物稳定性主要考量物料的腐熟程度,避免土地施用过程降解发臭和产生渗滤液的不良环境风险,因此原始厨余垃圾不进行生物稳定性实验。一级沼渣、二级沼渣、堆肥的AT 4 (以干基计)分别为(58.7±0.9)、(61.8±2.6)、(19.8±1.5)mg/g。欧盟、奥地利和德国、美国的AT 4 (以干基计)分别为≤10、≤5、≤35mg/g。
应进一步好氧堆肥处理,提高其生物稳定性。 一级沼渣经过20d的好氧堆肥,AT 4 显著降低,满足美国关于AT 4 (以干基计)≤35mg/g的要求。与金树权等和白玲等研究沼渣堆肥时间20d即可完成腐熟结论一致。
3. 植物毒性
物料植物毒性主要考量施用于土壤后对植物的影响,因此原始厨余垃圾不进行植物毒性实验。一级沼渣、二级沼渣、堆肥的种子发芽实验结果如图2所示。
图2 种子发芽实验结果示意
可见,一级沼渣和二级沼渣皆有较大的植物毒性,GI基本为0。文献中沼渣GI研究结果一般为55%~75%。这主要是因为文献中GI测量的浸提液采用鲜质量比1∶10配制,而本研究根据CJJ52—2014要求,GI测量的浸提液按干基固液比1∶10制取,使得浸提液浓度较其他研究高,从而GI降低。这与宋彩红等采用干基比研究沼渣的GI结果相似(26.8%)。
另外厨余垃圾采用干法厌氧消化,因其浓度高,降解时间理论上应长于湿法厌氧消化,但由于目前干法厌氧装置基本依托于进口,投资远高于湿法厌氧,为节省投资,目前干法厌氧停留时间反而较湿法厌氧短,导致出料进一步不稳定,植物毒性高。
经过20d好氧堆肥,GI显著提高至91.1%±6.3%, 满足GB/T33891—2017中绿地林地用有机基质GI≥65%和NY/T525—2021有机肥料中GI≥70%的要求。
4. 溶解性物质特征
一级沼渣、二级沼渣、堆肥中pH、NH 4 + -N、NO 3 - -N、COD、BOD含量见表2。
(1)pH
一级沼渣、二级沼渣、堆肥按干基比1∶10获得浸提液的pH。由表2可知,一级沼渣、二级沼渣和堆肥溶解性物质的pH均在8.0~8.5,经过堆肥,溶解性物质的pH没有显著变化,堆肥产品符合GB/T33891—2017中绿地林地用有机基质pH(4.0~9.5)和NY/T525—2021中pH(5.5~8.5)的 要求。
(2)NH 4 + -N和NO 3 - -N
由表2可知,二级沼渣溶解性NH 4 + -N含量最高,为一级沼渣的2.3倍;二级沼渣溶解性NO 3 - -N含量与一级沼渣相近,约为一级沼渣的1.2倍,因此二级沼渣总氮含量较一级沼渣高,可能具有更高的营养元素含量,更具有机肥料应用前景。
一级沼渣经过好氧堆肥,约0.6%的NH 4 + -N好氧转化为NO 3 - -N,使NO 3 - -N增加近1倍,大部分NH 4 + -N经挥发损失,转化和挥发使基质的溶解性NH 4 + -N急剧减少,较堆肥之初减少了89.6%。 为减少堆肥过程氮素损失,可考虑添加鸟粪石等调理剂,实现固氮效果,提高堆肥产品品质。
(3)COD和BOD
由表2可知,一级沼渣和二级沼渣溶解性COD相近,皆在4000~5000mg/L,二级沼渣比一级沼渣COD略高约10%。一级沼渣、二级沼渣溶解性有机物可生化性高,一级沼渣BOD/COD为0.42,二级沼渣BOD/COD为0.69,如果直接施用于土壤中,会产生高可生化性渗滤液,存在污染土壤和地下水的风险。
一级沼渣好氧堆肥后,溶解性COD和BOD分别显著降低35%和82%,可生化性明显下降为0.12,从侧面反映了堆肥产物腐熟度提高,土壤施用安全性增强。
目前我国厨余垃圾厌氧消化残余物常采用脱水+堆肥+筛分工艺处理,产品基本满足有机肥料和绿化用有机基质要求。一级沼渣经20d好氧堆肥,可增强生物稳定性,AT 4 降至20左右;增加腐熟程度,溶解性有机物BOD/COD降至0.12;降低植物毒性,GI提高至85%以上。
但需注意,一级沼渣堆肥后必须筛分处理,否则杂物含量将严重超标。二级沼渣杂物含量低,氮含量高,比一级沼渣更适合堆肥后施用于土壤,但堆肥过程需要添加秸秆等作为调理剂。
0人已收藏
0人已打赏
免费1人已点赞
分享
固废处理
返回版块8237 条内容 · 177 人订阅
回帖成功
经验值 +10
全部回复(1 )
只看楼主 我来说两句 抢板凳好资料,对于厨余垃圾处理具有很好的参考作用,学习啦,谢谢楼主分享
回复 举报