ChatGPT及大模型技术大会上,昆仑芯科技研发总监王志鹏表示:“作为一家芯片公司,需要对市场的需求和变化非常敏感,才能使硬件产品始终精准匹配主流需求。”
大模型对计算的要求主要体现在三个方面,一是算力,二是互联,三是成本。就大模型而言,昆仑芯科技在产品定义上已经做出布局——相较第一代产品,昆仑芯2代AI芯片可大幅优化算力、互联和高性能,而在研的下一代产品则将提供更佳的性能体验。
昆仑芯科技成立于2021年,前身为百度智能芯片及架构部。在实际业务场景中深耕AI加速领域已逾10年,专注打造拥有强大通用性、易用性和高性能的通用人工智能芯片。
在持续推进核心技术攻关的同时,昆仑芯科技紧密关注科技前沿,精准匹配市场需求。目前,公司已实现两代通用AI芯片的量产及落地应用,在互联网、智慧金融、智慧交通等领域已规模部署数万片。“来自真实场景”一直是昆仑芯科技最独特的身份标签,也是其规模部署数万片、在行业内“领跑落地”的核心优势所在。
王志鹏认为,只有基于真实业务场景中的数据进行端到端优化,才能顺利推进大模型落地。
目前市场上主流的大模型以Transformer架构为主,包含Encoder和Decoder。Encoder主要被应用于各类NLP的判别类任务;而Decoder更多被应用于翻译、图文生成等场景,最近出圈的ChatGPT就是典型代表。
针对大模型,昆仑芯持续打磨部署优化方案,领跑产业落地。昆仑芯已将大模型的Transformer相关优化技术沉淀为重要基建,优化后的性能比原有方案提升5倍以上,压缩显存30%以上。AI绘画模型的推理算力及显存需求随图像分辨率增大而指数级增加,同时,图像生成需要循环采样数十次,产业落地动辄需要高昂成本的部署集群,严重阻碍了AIGC模型大规模商业化落地。
2022年第四季度,昆仑芯联合客户,基于飞桨PaddlePaddle发起了端到端联合优化项目。在2-3周内,项目组快速完成端到端优化,最终实现输入文本后2秒出图的优化效果,性能提升近8倍。
目前,昆仑芯AI加速卡R200已在该客户的大模型场景完成规模部署,性能数据全面超越同系列主流推理卡:
基于昆仑芯AI加速卡R200高效运算与推理能力,综合优化方案,在dpm-25steps算法下,利用昆仑芯AI加速卡R200,生成1024*1024图像时的推理速度为10.89 iters/s,相比同能力的主流推理卡快20%。
0人已收藏
0人已打赏
免费0人已点赞
分享
BIM专业软件
返回版块9072 条内容 · 254 人订阅
阅读下一篇
AMEYA360报道:工业激光雷达不同的硬件架构激光雷达的整个系统构造分为四大部分,处理控制部分和ASIC部分负责光学信号处理,发射单元和接收单元负责感知。发射器端除了激光,还有一个驱动,再加上透镜,就构成了发射器模组。激光测距的原理非常简单,对比所有的测距方法属于不算难的那一类。但这里面有很多问题需要解决,这束光如何发射出去,发射出什么样的光形又需要通过什么样的处理等等。 这些都和激光器以及驱动息息相关。众所周知,激光器是激光雷达应用的核心器件,这也紧密地关系着激光雷达的技术路线与目标市场。EEL和VCSEL激光器是目前最主流的一个选择。从实现的效果来看,体现在测距能力、角度分辨率以及视场大小上。
回帖成功
经验值 +10
全部回复(0 )
只看楼主 我来说两句抢沙发