本文主要讲述常见的开关电源拓扑结构特点和优缺点对比。
常见的拓扑结构,包括Buck降压、Boost升压、Buck-Boost降压-升压、Flyback反激、Forward正激、Two-Transistor Forward双晶体管正激等。
常见的基本拓扑结构
基本的脉冲宽度调制波形
这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:
常见的基本拓扑结构
1、Buck降压
把输入降至一个较低的电压。
可能是最简单的电路。
电感/电容滤波器滤平开关后的方波。
输出总是小于或等于输入。
输入电流不连续(斩波)。
输出电流平滑。
2、Boost升压
把输入升至一个较高的电压。
与降压一样,但重新安排了电感、开关和二极管。
输出总是比大于或等于输入(忽略二极管的正向压降)。
输入电流平滑。
输出电流不连续(斩波)。
3、Buck-Boost降压-升压
电感、开关和二极管的另一种安排方法。
结合了降压和升压电路的缺点。
输入电流不连续(斩波)。
输出电流也不连续(斩波)。
输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激
如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
输出可以为正或为负,由线圈和二极管的极性决定。
输出电压可以大于或小于输入电压,由变压器的匝数比决定。
这是隔离拓扑结构中最简单的。
增加次级绕组和电路可以得到多个输出。
5、Forward正激
降压电路的变压器耦合形式。
不连续的输入电流,平滑的输出电流。
因为采用变压器,输出可以大于或小于输入,可以是任何极性。
增加次级绕组和电路可以获得多个输出。
在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组。
在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
6、Two-Transistor Forward双晶体管正激
两个开关同时工作。
开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。
主要优点:每个开关上的电压永远不会超过输入电压;无需对绕组磁道复位。
7、Push-Pull推挽
开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。
良好的变压器磁芯利用率——在两个半周期中都传输功率。
全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
施加在FET上的电压是输入电压的两倍。
8、Half-Bridge半桥
较高功率变换器极为常用的拓扑结构。
开关的驱动不同相,进行脉冲宽度调制以调节输出电压。
良好的变压器磁芯利用率——在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。
全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
施加在FET上的电压与输入电压相等。
9、Full-Bridge全桥
较高功率变换器最为常用的拓扑结构。
开关以对角对的形式驱动,进行脉冲宽度调制以调节输出电压。
良好的变压器磁芯利用率——在两个半周期中都传输功率。
全波拓扑结构,所以输出纹波频率是变压器频率的两倍。
施加在 FETs上的电压与输入电压相等。
在给定的功率下,初级电流是半桥的一半。
10、SEPIC单端初级电感变换器
输出电压可以大于或小于输入电压。
与升压电路一样,输入电流平滑,但是输出电流不连续。
能量通过电容从输入传输至输出。
需要两个电感。
11、C’uk(Slobodan C’uk的专利)
输出反相。
输出电压的幅度可以大于或小于输入。
输入电流和输出电流都是平滑的。
能量通过电容从输入传输至输出。
需要两个电感。
电感可以耦合获得零纹波电感电流。
0人已收藏
0人已打赏
免费0人已点赞
分享
继电保护
返回版块7.33 万条内容 · 452 人订阅
阅读下一篇
直流电子负载为什么可以测试直流电源直流电子负载可模拟各种负载特性,具有节能、灵活等特点,是测定直流开关电源输出特性的高精度模拟仪器,也可用于其他场合,如直流电机测试、直流发电机等研发生产测试产品,通过本产品可模拟直流电源的短路,触发电源内部保护电路,监测电源的短路电流。可满足客户对电子电源安全运行的测试要求,主要适用于多通道或单通道AC-DC输出、DC-DC开关及相关电子电源测试项目。 直流电子负载为什么能测试直流电源? 1、容错能力
回帖成功
经验值 +10
全部回复(0 )
只看楼主 我来说两句抢沙发