土木在线论坛 \ 建筑结构 \ 岩土工程 \ 锚固设计计算

锚固设计计算

发布于:2022-10-31 10:17:31 来自:建筑结构/岩土工程 [复制转发]

基本要求

在调查研究和岩土工程勘察工作基础上,锚固工程应采用 理论计算、工程类比和监控量测相结合 的设计方法, 合理发挥岩土体的固有强度和自承能力。 在锚杆设计前,应依据调查及勘察结果,对所采用的锚杆安全性、经济性进行评估,对施工可行性做出判断。
锚杆按其服务期限可分为临时锚杆和永久锚杆 :使用期限在2年以内的,可按临时锚杆设计;使用年限超过2年的,应按永久锚杆设计。 设计永久锚杆时,必须先进行锚杆基本试验 ,并避免锚固段布设在未经处理的下列土层中:

图片


设计流程

以预应力锚杆为例,锚固工程设计主要包括锚固力(斜坡、挡墙、锚拉桩等)计算、锚杆布置及安设角度确定、锚杆杆体材料选择及确定、锚杆结构设计、锚头及防腐设计、整体稳定性验算等内容。

图片


边坡锚固力计算

边坡锚固力计算过程中,首先需按照规范确定边坡设计安全系数,其次针对不同的破坏形式,计算单位长度边坡所需的锚固力。边坡锚固力计算可采用极限平衡法,但对于重要或复杂边坡的锚固设计,宜同时采用极限平衡法与数值分析法。
  • 可能产生圆弧滑动的锚固边坡,宜采用简化毕肖普法、摩根斯坦-普赖斯法或简布法计算,也可采用瑞典法计算;

  • 可能产生直线滑动的锚固边坡,宜采用平面滑动面解析法计算;

  • 可能产生折线滑动的锚固边坡,宜采用传递系数隐式解法、摩根斯坦-普赖斯法或萨玛法计算;

  • 岩体结构复杂的锚固边坡,可配合采用赤平极射投影法进行分析。


1) 单平面破坏模式
当边坡存在一组出露于坡面的软弱结构面,其走向与坡面走向近似,倾角小于坡面倾角、但大于弱面的内摩擦角,边坡易产生单平面破坏,多出现在岩质边坡中,通常分为坡顶有拉裂缝和无拉裂缝两种情况。但大多数单平面破坏边坡在破坏前坡顶会出现不同程度的拉裂缝。

图片

图片


图片

图片


图片

图片


图片

图片


图片

图片

图片

图片

图片


6) 锚杆布设
锚杆布设原则上应根据实际地层情况以及锚杆与其它支挡结构联合使用的具体情况确定,必须充分了解边坡的地质状况,确定边坡变形破坏的模式后,才能决定锚杆布设位置。
锚杆布设的总体原则是对边坡滑体产生最佳的抗滑效果 ,一般应满足以下基本要求:
(1)
 锚杆间距和长度,应根据锚固工程周围地层的整体稳定性确定。
(2) 
锚杆间距除必须满足锚杆的受力要求外,还应大于1.5m ,以避免因群锚效应而降低锚固力。当所采用的间距小于1.5m时,应将相邻锚杆的倾角调整至相差3°以上。
岩土锚杆通常是以群体的形式出现的,若锚杆布置较密集,地层中受力区的重叠会引起应力叠加和锚杆位移,从而使锚杆极限抗拔力不能有效发挥,即
群锚效应 。锚杆极限抗拔力会因群锚效应而减小,群锚效应与锚杆间距、直径、长度及地层形状等因素有关。
(3) 
锚杆与相邻基础或地下设施间的距离应大于3.0m。
(4) 
锚杆锚固段应在潜在滑面以外的稳定岩土体内,且上覆土层厚度不宜小于4.5m ,避免坡顶反复荷载的影响,同时不会因较高注浆压力而使上覆土层隆起。
(5) 根据锚杆的作用原理,对于不同类型工程,锚杆倾角是不同的,确定锚杆倾角应有利于满足工程抗滑、抗塌、抗倾或抗浮的要求。但就控制注浆质量而言,若锚杆倾角过小时,注浆料因泌水和硬化而产生的残余浆渣会影响锚杆的承载力,故
锚杆倾角宜避免与水平面成-10°~+10°的范围,10°范围内锚杆的注浆应采取保证浆液灌注密实的措施。
(6) 为使钢绞线间有适宜的间距,保证钢绞线被足够的水泥浆所包裹,以满足钢绞线与注浆体间黏结强度的要求,锚杆钻孔直径应满足锚杆抗拔承载力和防腐保护要求,压力型或压力分散型锚杆的钻孔直径尚应满足承载体尺寸的要求。
(7) 
预应力锚杆的布置间距应根据边坡地层性态、所需提供的总锚固力及单锚承载力设计值确定。 一般条件下,I、II、III类岩体边坡预应力锚杆间距宜为3.0~6.0m,IV类岩体及土质边坡预应力锚杆间距宜为2.5~4.0m。
(8) 锚杆的布设角度,对基坑或近于直立的边坡而言,需考虑邻近状况、锚固地层位置及施工方法。
一般锚杆的倾角不小于13°,也不应大于45°。 倾角愈大,抵抗滑体滑动的能力将相应地减弱,故锚杆布设角以15~35°为宜。
倾倒破坏 的边坡,预应力锚杆的设计 布设角度宜与岩体层理面垂直。对滑动破坏的边坡,预应力锚杆的布设角度应发挥锚杆的抗滑作用 ,在施工可行条件下,锚杆倾角宜按下式计算:

图片


当边坡失稳模式为滑动破坏时,应将锚杆布置在潜在滑动体的中、下部;
当边坡失稳模式为倾倒破坏时,应将锚杆布置在潜在倾倒体的中、上部;
当存在软岩层或风化带,可能导致边坡变形破坏时,锚杆应穿过软岩层或风化带布置,并采用混凝土锚固墩封闭。

图片


当滑面由单一不连续面控制且岩体较完整时,锚杆间距并不重要,而当岩体较破碎时,锚杆布置应能使岩体内形成一个连续的挤压带。锚头与锚固段之间形成一个约90°的压力锥体,锥体范围内岩石相互挤压,形成一个整体,从而阻止岩体变形。

图片

基于挤压加固作用原理,布置锚杆时应使之在纵横方向均有一定数量,使每根锚杆周围形成彼此联结的压缩锥体,并有一定的相互压叠。为使锚杆间边坡表面的岩体不发生脱落,可用钢筋混凝土框架梁及布设在锚头与横梁间的金属网支撑,通过横梁将力传递到锚杆上。


7) 锚杆结构设计
(1) 锚杆杆体截面面积
预应力锚杆结构的设计计算主要包括三个方面,即:
锚杆杆体的抗拉承载力计算、锚杆锚固段注浆体 与杆体的抗拔承载力计算 、以及 注浆体与地层间的抗拔承载力计算 。一般而言,前者用以确定锚杆杆体的截面面积,后两者则用于确定锚杆锚固段长度。此外,对于压力型或压力分散型锚杆,还应进行锚固段注浆体横截面的受压承载力计算。

图片

(2) 锚杆锚固段长度
锚固段长度可根据计算和工程类比法确定,对于I、II级边坡应同时采用现场拉拔试验验证。锚杆或单元锚杆的锚固段长度可由下列确定,并取两者间的较大值:

图片

一般而言, 拉力型与压力型锚杆的锚固段长度宜为3~8m(岩石)和6~12m(土层) 。在软岩或土层中,当拉力或压力型锚杆的锚固段长超过8m(软岩)和12m(土层)仍无法满足极限抗拔承载力要求或需要更高的锚杆极限抗拔承载力时, 宜采用压力分散型或拉力分散型锚杆 。压力分散型与拉力分散型锚杆的单元锚杆锚固段长度宜为2~3m(软岩)和3~6m(土层)。

(3) 锚杆自由段长度
锚杆自由段长度应根据锚杆与滑面、边坡坡面的交点间距确定。若锚杆自由段长度过短,对锚杆施加初始预应力后,锚杆的弹性位移较小,一旦锚头出现松动等情况,可能会造成较大的预应力损失,因此
锚杆自由段长度一般不应小于5.0m 。此外, 自由段应穿过潜在滑面至少1.5m,并将锚固段布设于合适的地层内 ,以保证锚固系统的整体稳定性。

8) 锚杆杆体对中器设计
锚杆杆体对中器的主要作用包括两方面:①杆体处于锚固体砂浆中部,当杆体受力时,锚固体能均匀受力;②杆体周围砂浆厚度均匀且满足防腐要求。

图片

图片


9) 锚杆初始预应力确定
对地层和被锚固结构位移控制要求较高的工程,锚杆初始预应力值宜为锚杆拉力设计值;对地层和被锚固结构位移控制要求较低的工程,锚杆初始预应力值宜为锚杆拉力设计值的0.70~0.85倍;对显现明显流变特征的高应力低强度岩体中隧洞和洞室支护工程,初始预应力宜为锚索拉力设计值的0.5~0.6倍;对用于特殊地层或被锚固结构有特殊要求的锚杆,其初始预应力可根据设计要求确定。

10) 锚杆传力结构与锚头设计
表层为土层或软弱破碎岩体的边坡,宜采用框架梁型钢筋混凝土传力结构;I、II类及完整性好的III类岩质边坡宜采用墩座或地梁型钢筋混凝土传力结构;有条件时应优先采用预制的传力结构。设置预制式传力结构可最大限度地缩小开挖面的裸露面积与裸露时间,有利于保护开孔后岩土体的固有强度和自稳能力,增强边坡的整体稳定性,并可显著缩短边坡的建设周期。

图片

图片


11) 锚杆防腐保护构造设计 永久锚杆必须进行防腐设计。 腐蚀环境中的永久锚杆应采用I级防腐保护构造设计,腐蚀环境中的临时锚杆和非腐蚀环境中的永久锚杆可采用II级防腐保护构造设计;非腐蚀环境中的临时锚杆可采用III级防腐保护构造设计。锚杆的I、II、III级防护具体构造可参考《岩土锚杆与喷射混凝土支护工程技术规范》(GB 50086-2015)。

12) 锚固系统整体稳定性验算
锚固系统有多种破坏形式,设计时必须仔细校核各种可能的破坏形式。因此,除锚杆抗拉力应满足设计要求外,
还必须验算锚杆和边坡岩土体组成的锚固系统整体稳定性。 锚固系统的外部稳定性可采用圆弧滑动法或折线滑动法验算;内部稳定性可采用Kranz法验算。

内容源于网络,仅作分享使用,如有侵权,请联系删除 

相关资料推荐:

锚固工程设计计算与施工

MKT 锚固设计计算软件3.31版


知识点:锚固设计计算

全部回复(0 )

只看楼主 我来说两句抢沙发
这个家伙什么也没有留下。。。

岩土工程

返回版块

1.59 万条内容 · 372 人订阅

猜你喜欢

阅读下一篇

锚固要素分析

边坡锚固通常采用水泥砂浆(或水泥浆、化学浆液、树脂等)将一组杆体(钢筋或钢丝束等)锚固在边坡地层的钻孔深处,从而达到锚固效果。 实际锚固工程中,水泥砂浆锚杆占绝大多数。 锚杆基本力学参数 1) 抗拔力:锚杆在拉拔试验中承受的极限拉力,即锚固力。2) 握裹力:锚杆杆体与黏结材料间的最大抗剪力。3) 黏结力:锚杆黏结材料与孔壁岩土间的最大抗剪力。

回帖成功

经验值 +10