土木在线论坛 \ 电气工程 \ 电气工程原创版块 \ 放大器正、负反馈基础电路介绍与仿真

放大器正、负反馈基础电路介绍与仿真

发布于:2022-10-16 16:14:16 来自:电气工程/电气工程原创版块 [复制转发]

知识点:双电源同向放大器仿真

截至到上一篇将特种放大器的参数也介绍完成,原本计划开始介绍LTspice工具的基础使用。但本周在帮老同事的忙,分析他们公司一些放大器产品的典型应用电路资料时,发现竟然出现正反馈的放大电路的信号调理电路,另外近期也有朋友问“虚短”,“虚断”部分内容,所以决定增加本篇基础的内容,正反馈、负反馈电路仿真进行收尾放大器的应用。

     所谓“反馈”是取放大器的一部分输出电压,作为输入参考电压,与输入信号进行比较。由于放大器有正相输入端、负相输入端,所以构成反馈方式有正反馈、负反馈。本节介绍这这两种反馈的工作原理。

    如图1.2(a),把输出信号的一部分引入正相输入端“+”为正反馈。图1.2(b),把输出信号的一部分引入反相输入端“-”为负反馈。

图片


图1.2 放大器反馈方式

    正反馈—施密特触发器

    为便于电路分析将图1.2(a)引入激励信号VS,对应输出信号为VO,反馈电压Vf是基于电阻R2在串联电阻R1,R2通路上对输出信号的分压,重新绘电路如图1.3,反馈电压如式1-1。

图片

图片

图1.3 放大器正反馈示意图

    反相输入端电压是V-, 同相输入端电压是V+,放大器输入的差分电压Vin为同相端输入电压与反相端输入电压之差,如式1-2。

图片

    当放大器的供电电压为±Vcc,工作方式如图1.4,获得两点结论:

图片

图1.4 正反馈电路工作方式

    (1)正反馈的输出信号VO,随输入信号VS的变化,在+VCC,-VCC两个电源轨电压处振荡。

    (2)反馈电压Vf随输出信号VO的变化而变化,如式1-3。

图片

    其中,Vs信号电压正(反)向增加时,与反馈信号Vf电压比较,改变输出信号Vo极性的阈值电压称为上限电压VU(下限电压VL),关系如式1-4。

图片

    上限电压VU与下限电压VL的差值称为滞后电压VH。这个电压比较的工作过程是施密特触发器的工作原理。

    使用ADA4077-2实现施密特电路,工作电压为±12V,R1、R2电阻设定为10KΩ,激励信号Vs是幅值为±12V,频率为1KHz正弦波,输出电压为Vo,反馈电压Vf,如图1.5。

图片

图1.5 施密特电路仿真图

    仿真结果如图1.6,反馈电压Vf的上限电压VU为6V,下限电压VL为-6V,当Vin电压增加超过+6V时,输出电压VO变为-12V;当VS电压下降低于-6V时,输出电压VO变为+12V。

正反馈工作中放大器的同相输入端、反相输入端保持非常大的电压差,使得放大器的输入级工作在饱和区或截止区,所以,施密特触发器适用于周期信号、脉冲信号与设定阈值电压的信号整形,或者延迟控制等方面。

图片

图1.6 施密特电路仿真结果

    负反馈—输入端“虚短、虚断”特性

    如图1.7,负反馈工作中的放大器,VS为激励信号,VO为输出信号,Vf为反馈信号,放大器两个输入端电压差为Vin,放大器的增益A接近无限大,电源供电电压为±Vcc,工作方式如图1.8。

图片

图1.7放大器负反馈示意图

图片

图1.8负反馈电路工作方式

    输出信号VO、反馈信号Vf紧紧跟随输入信号的变化。放大器对输入误差的增益A接近无限大,为保证放大器输出信号不失真,放大器两个输入端V+、V-的电压差信号接近0V,即“虚短”。(由于失调电压参数的存在,没有称“真短”

    “虚断”是指分别流入放大器两个输入端的电流I+,I-接近0A(由于偏置电流参数的存在,没有称为“真断”),即放大器的两个输入端与外部电路近似断开。

    在负反馈电路中“虚短”、“虚断”原则,是保证放大器实现线性放大的基本条件。

    如下介绍负反馈基础电路

    1 反相放大电路

    如图1.12(a)为双电源供电的反相放大电路,输入信号Vin,通过电阻Rg作用于放大器的反相输入端。由于“虚短”原则,反相输入端电压为0V,又由于“虚断”输入电流与输出电流大小相等,方向相反,即输出电压VO与输入电压Vin的符号相反,如式1-12。

图片

    反相电路的增益G,如式1-13

图片

    反相放大电路的力学模型是杠杆,如图1.12(b)。杠杆的支点是反相输入端的电压(0V),杠杆的长度是对应电阻(Rg、Rf)阻值,杠杆的摆幅是对应输入、输出的电压(VO、Vin)。

图片

图1.12 反相放大电路及力学模型

    如图1.13,使用ADA4077实现反相放大电路,电源使用±15V,激励信号Vin是峰峰值为0.2V,频率为10KHz的正弦信号,通过2KΩ电阻R1连接到反相输入端,反馈电阻R2为10KΩ。

图片

图1.13 反相放大电路仿真图

    电路瞬态分析结果如图1.14。输出(out)信号是频率为10KHz,峰峰值为1V正弦信号。峰峰值是输入信号的5倍,但是相位与输入信号相差半个周期。

图片

图1.14 反相放大电路仿真结果

    上述是双电源供电电路,在单电源供电电路中,同相输入端的“地”电位将由参考电压Vref取代,典型取值为电源电压的一半,如图1.15。因此,输入电压和输出电压将以Vref电压为参考,其输入电压与输出电压关系满足式1-14。

图片

图片

图1.15 单电源供电反向放大电路

    2 同相放大电路

    如图1.16(a),双电源供电的同相放大电路,输入信号Vin直接作用于放大器的同相输入端。由于“虚短”原则,反相输入端电压为Vin,再根据“虚断”原则输入电流与输出电流大小相等,方向相同,即输出信号VO与输入信号Vin符号相同,如式1-15。  图片    整理得到同相电路的增益G,如式1-16。   

图片

    同相放大电路的力学模型是钟摆,如图1.16(b)。钟摆的固定点是地,上摆(Rg)的摆幅Vin,带动下摆(Rg+Rf)产生Vo的摆幅VO,下摆(VO)的方向跟随上摆(Vin)的方向。

    图片

图1.16同相放大电路及力学模型

    如图1.17,使用ADA4077组建同相放大电路,电源使用±15V供电,激励信号Vin是峰峰值为2V,频率为10KHz的正弦信号,连接到同向输入端。反相输入端通过10KΩ电阻R1连接到地,反馈电阻R2为10KΩ,连接在输出端与反相输入端。

图片

图1.17同相放大电路仿真图

    电路瞬态分析的结果如图1.18。输出信号是峰峰值为4V的正弦信号,是输入信号幅值的2倍,并且与输入信号同频率、同相位。

图片

图1.18同相放大电路仿真结果

    3 求和电路

    如图1.19为双电源供电的求和电路,在反向放大电路基础上增加Vin2、Vin3两路信号源,分别通过Rg2、Rg3连接到反向输入端。根据叠加定律电路,输出信号是输入信号Vin1、Vin2、Vin3单独作用时,产生的输出信号Vo1、Vo2、Vo3的总和,如式1-17。

图片

图片

图1.19求和电路

    如图1.20,使用ADA4077组建的三路输入信号的求和电路,电源使用±15V供电,反馈电阻R2为10KΩ,激励信号Vin1是峰峰值为1V,频率为10KHz的正弦信号,通过电阻R1(4.99KΩ)连接到反相输入端;激励信号Vin2是峰峰值为0.4V,频率为10KHz的正弦信号,通过电阻R3(2KΩ)连接到反相输入端;激励信号Vin3是峰峰值为2V,频率为10KHz的正弦信号,通过电阻R4(10KΩ)连接到反相输入端。

图片

图1.20 求和电路仿真图

    电路瞬态分析的结果如图1.21。输出信号的峰峰值为6V,是将Vin1峰峰值放大2倍、Vin2峰峰值放大5倍,Vin3峰峰值放大1倍的总和,输出信号频率与输入信号频率相同,输出信号相位与输入信号相位相差半个周期。

图片

图1.21 求和电路仿真结果

    4 积分电路

    如图1.22为双电源供电的积分电路,输入端电流Iin,如式1-18。    

图片

    输出端电容上的蓄积电压VO,如式1-19。

图片

    又因为电容Cf电荷量满足式1-20。

图片

图片

图1.22 积分电路

    根据“虚短、虚断”原则,输出信号VO为输入信号Vin积分后的电压,如式1-21。 

图片

    上述为理想积分器的电路,截至频率会跟随电路的放大倍数变化而变化,需要另外使用反馈电阻Rf,给予放大器稳定的带宽,如图1.23。

图片

图1.23实用积分电路

    如图1.24,由ADA4077组建的积分电路,电源使用±15V供电,反馈电阻R2为100KΩ,反馈电容Cf为0.1μF,激励信号Vin是幅值为±5V,周期为10ms 方波信号。

图片

图1.24 积分电路仿真图

    电路瞬态分析的结果如图1.25,输出信号为锯齿波,是对输入信号的连续积分运算。

图片

图1.25积分电路瞬态分析结果

5 微分电路

    如图1.26为双电源供电的微分电路,输入信号Vin,如式1-22。

图片    将式1-22对时间t求导数,整理获得输入电流Iin,如式1-23。    


图片

    根据“虚短、虚断”原则,输出电压VO满足式1-24。

图片

图片

 图1.26 微分电路

    在实际微分运算电路中,当输入电压变化时,极易使放大器内部的放大管进入饱和或者截至状态,从导致电路工作异常。电路改善的方法是,在输入端串联电阻Rg,在反馈电阻Rf并联小电容Cf,如有需要再并联稳压二极管D1、D2,如图1.27。

图片

图1.27 实用微分电路

    如图1.28,由ADA4077组建的微分电路,电源使用±15V,反馈电阻R2为100Ω,反馈电容C1为0.01μF,输入端电阻R1为100Ω,输入端电容C2为1μF,激励信号Vin是为峰峰值为10V,周期10ms方波信号。

图片


图1.28 微分电路仿真图

    电路瞬态分析的结果如图1.29,在输入信号电平转换时进行微分运算产生输出脉冲信号。

图片

图1.29 微分电路仿真瞬态分析结果

    6 差动放大电路

    如图1.30为双电源供电的差动放大电路,输入信号Vin1,通过电阻Rg1作用于放大器的反相输入端,输出信号VO通过反馈电阻Rf回馈到反相输入端,输入信号Vin2,通过电阻Rg2作用于放大器的同相输入端,同相输入端同通过电阻Rref连接到参考电压,在双电源供电电路中,参考电压可接地处理,单端电源供电时参考电压为供电电压的一半。

    由“虚短”原则,放大器反相、同相端输入电压Va、Vb,如式1-25。图片


    根据“虚断”原则与基尔霍夫定律可得In1等于Io,如式1-26。

图片

    进一步整理可得,式1-27。

图片

    当Rg2=Rg1,Rf=Rref时,式1-27可简化为式1-28。     图片


图片

图1.30差动放大电路

    如图1.31,由ADA4077组建的差动运算电路,电源使用±15V供电,反馈电阻R2为100KΩ,激励信号Vin1是峰峰值为2.7V,频率为10KHz的正弦信号,通过电阻R1(10KΩ)连接到反相输入端;激励信号Vin2是峰峰值为2.4V,频率为10KHz的正弦信号,通过电阻R3(10KΩ)连接到同相输入端,同相输入端通过电阻R4(100KΩ)连接到地。输入信号Vin1、Vin2的相位相同。

图片


图1.31差动放大电路仿真图

    电路瞬态分析的结果如图1.32,输出信号是峰峰值为3V,频率为10KHz的正弦波。幅值是将输入信号Vin1,Vin2的差值放大10倍。输出信号与输入信号的频率相同,相位相差半个周期。

图片

图1.32差动放大电路瞬态仿真结果 



相关推荐链接:

1、集成运算放大器应用

2、图像无损放大器


全部回复(0 )

只看楼主 我来说两句抢沙发
这个家伙什么也没有留下。。。

电气工程原创版块

返回版块

2.19 万条内容 · 558 人订阅

猜你喜欢

阅读下一篇

双电源自动切换开关的功能特点、分类及选择,一次讲清

知识点:双电源 什么是双电源切换开关?想必从事电气行业多年的电气人员都不陌生了。但是相对于部分刚刚接触电气行业不久的小白来说就可能一知半解了。双电源切换开关就是因故停电自动切换到另外一个电源的开关,一般双电源切换开关是广泛应用于高层建筑、机房、小区、医院、机场、码头、消防、冶金、化工、纺织等不允许停电的重要场所。双电源切换开关的使用增强了用电负荷的可靠性和灵活性,但是如果不能熟悉,掌控开关的性能,也可能造成开关的不正常工作,给用电负荷的安全运行带来威胁。下面本文根据双电源切换开关的应用经验,分析其性能特点,提出从设计选型到实际应用等各环节中的注意事项,确保其能够充分发挥应有的作用。看完文章,希望能给广大电气人员加深对双电源自动切换开关的认识。

回帖成功

经验值 +10