A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的效果,处理效率一般能达到: BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型污水厂。
1、首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。
2、在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。
3、在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。
A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。厌氧池和好氧池联合完成除磷功能。
1)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(2)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(3)在厌氧-缺氧-好氧交替运行下,丝状菌不会大量繁殖,SVI一般100,不会发生污泥膨胀。
(4)污泥中磷含量高,一般为2.5%以上。
(5)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。
可生物降解有机物对脱氮除磷有着十分重要的影响,它对A2O工艺中的三种生化过程的影响是复杂的、相互制约甚至是相互矛盾的。
在厌氧池中,聚磷菌本身是好氧菌,其运动能力很弱,增殖缓慢,只能利用低分子的有机物,是竞争能力很差的软弱细菌。但由于聚磷菌能在细胞内贮存PHB和聚磷酸基,当它处于不利的厌氧环境下,能将贮藏的聚磷酸盐中的磷通过水解而释放出来,并利用其产生的能量吸收低分子有机物而合成PHB,在利用有机物的竞争中比其它好氧菌占优势,聚磷菌成为厌氧段的优势菌群。
因此,污水中可生物降解有机物对聚磷菌厌氧释磷起着关键性的作用。
所以,厌氧池进水中溶解性磷与溶解性有机物的比值(S-P/S-BOD)应在0.06之内,且有机物的污泥负荷率应> 0.10 kgBOD5/kgMLSS·d。
在缺氧段,异养型兼性反硝化菌成为优势菌群,反硝化菌利用污水中可降解的有机物作为电子供体,以硝酸盐作为电子受体,将回流混合液中的硝态氮还原成N2而释放,从而达到脱氮的目的。污
水中的可降解有机物浓度高,则C/N比高,反硝化速率大,缺氧段的水力停留时间HRT短,一
般为0.5~1.0 h即可。
反之,则反硝化速率小,HRT需2~3 h。
可见污水中的C/N比值较低时,则脱氮率不高。通常只要污水中的COD/TKN>8时,氮的去除率可达80%。在好氧段,当有机物浓度高时污泥负荷也较大,降解有机物的异养型好氧菌超过自养型好氧硝化菌,使氨氮硝化不完全,出水中NH4+-N浓度急剧上升,使氮的去除效率大大降低。
所以要严格控制进入好氧池污水中的有机物浓度,在满足好氧池对有机物需要的情况下,使进入好氧池的有机物浓度较低,以保证硝化细菌在好氧池中占优势生长,使硝化作用完全。
对此,好氧段的污泥负荷应<0.18 kgBOD5/kgMLSS·d。
由此可见,在厌氧池,要有较高的有机物浓度;在缺氧池,应有充足的有机物;而在好氧池的有机物浓度应较小。
A2O工艺污泥系统的污泥龄受两方面的影响。首先是好氧池,因自养型硝化菌比异养型好氧菌的最小比增殖速度小得多,要使硝化菌存活并成为优势菌群,则污泥龄要长,经实践证明一般为20~30 d为宜。但另一方面,A2O工艺中磷的去除主要是通过排出含高磷的剩余污泥而实现的,如ts过长,则每天排出含高磷的剩余污泥量太少,达不到较高的除磷效率。同时过高的污泥龄会造成磷从污泥中重新释放,更降低了除磷效果。所以要权衡上述二方面的影响,A2O工艺的污泥龄一般宜为15~20 d。
在好氧段,DO升高,硝化速度增大,但当DO>2mg/L后其硝化速度增长趋势减缓,高浓度的DO会抑制硝化菌的硝化反应。同时,好氧池过高的溶解氧会随污泥回流和混合液回流分别带至厌氧段和缺氧段,影响厌氧段聚磷菌的释放和缺氧段的NOx--N的反硝化,对脱氮除磷均不利。相反,好氧池的DO浓度太低也限制了硝化菌的生长率,其对DO的忍受极限为0.5~0.7 mg/L,否则将导致硝化菌从污泥系统中淘汰,严重影响脱氮效果。所以根据实践经验,好氧池的DO为2 mg/L左右为宜,太高太低都不利。在缺氧池,DO对反硝化脱氮有很大影响。这是由于溶解氧与硝酸盐竞争电子供体,同时还抑制硝酸盐还原酶的合成和活性,影响反硝化脱氮。为此,缺氧段DO<0.5 mg/L。在厌氧池严格的厌氧环境下,聚磷菌才能从体内大量释放出磷而处于饥饿状态,为好氧段大量吸磷创造了前提,从而才能有效地从污水中去除磷。但由于回流污泥将溶解氧和NOx-带入厌氧段,很难保持严格的厌氧状态,所以一般要求DO<0.2 mg/L,这对除磷影响不大。
从好氧池流出的混合液,很大一部分要回流到缺氧段进行反硝化脱氮。混合液回流比的大小直接影响反硝化脱氮效果,回流比RN大、脱氮率提高,但回流比RN太大时则混合液回流的动力消耗太大,造成运行费用大大提高。根据A2O工艺系统的脱氮率η与混合液回流比RN的关系式η=RN1+RN(%)可以得到二者之间相互关系。
回流污泥是从二沉池底流回到厌氧池,靠回流污泥维持各段污泥浓度,使之进行生化反应。如果污泥回流比R太小,则影响各段的生化反应速率,反之回流比R太高,A2O工艺系统中硝化作用良好,反硝化效果不佳,导致回流污泥将大量NO-X-N带入厌氧池,引起反硝化菌和聚磷菌产生竞争,因聚磷菌为软弱菌群,所以反硝化速度大于磷的释放速度,反硝化菌抢先消耗掉快速生物降解的有机物进行反硝化,当反硝化脱氮完全后聚磷菌才开始进行磷的释放,这样虽有利于脱氮但不利于除磷。当厌氧段NOx--N<2 mg/L,对生物除磷没有影响,当COD/TKN>10,则NOx--N浓度对生物除磷也没有多大影响。相反,如果A2O工艺系统运行中反硝化脱氮良好,而硝化效果不佳,此时虽然回流污泥中硝态氮含量减少,对厌氧除磷有利,但因硝化不完全造成脱氮效果不佳。权衡上述污泥回流比的大小对A2O工艺的影响,一般采用污泥回流比R=(60~100)%为宜,最低也应在40%以上。
好氧段的硝化反应,过高的NH4+-N浓度对硝化菌会产生抑制作用,实验表明TKN/MLSS负荷率应<0.05 kgTKN/kgMLSS·d,否则会影响氨氮的硝化。
根据实验和运行经验表明,A2O工艺总的水力停留时间HRT一般为6~8 h,而三段HRT的比例为厌氧段∶缺氧段∶好氧段=1∶1∶(3~4)。
好氧段,硝化反应在5~35℃时,其反应速率随温度升高而加快,适宜的温度范围为30~35℃。当低于5℃时,硝化菌的生命活动几乎停止。有人提出硝化细菌比增长速率μ与温度的关系为μ=μ0θ(t-20),式中μ0为20℃时最大比增长速率,θ温度系数,对亚硝酸菌θ为1.12、对硝酸菌为1.07。缺氧段的反硝化反应可在5~27℃进行,反硝化速率随温度升高而加快,适宜的温度范围为15~25℃。 厌氧段,温度对厌氧释磷的影响不太明显,在5~30℃除磷效果均很好。
在厌氧段,聚磷菌厌氧释磷的适宜pH值是6~8;在缺氧反硝化段,对反硝化菌脱氮适宜的pH值为6.5~7.5;在好氧硝化段,对硝化菌适宜的pH值为7.5~8.5。
相关资料推荐:
https://ziliao.co188.com/d63510081.html
知识点:A2/O工艺详细介绍及影响因素分析
全部回复(0 )
只看楼主 我来说两句抢沙发