《巴黎协定》确定了控制全球温度上升的目标:将温升控制在2℃之内,并争取控制在1.5℃之内。为实现这一长期目标,各国温室气体排放应尽快达到峰值,并促使全球在21世纪中叶实现碳中和。中国作为世界上最大的碳排放国家与工业门类最为齐全的国家,正处在城镇化快速发展阶段,面临着经济转型、环境保护、应对气候变化等多重挑战。 长期以来,中国高度重视气候变化问题,把积极应对气候变化作为国家经济社会发展的重大战略,采取了一系列行动,为应对全球气候变化做出了重要贡献。自“十二五”以来,中国积极实施了各项政策措施,产业结构和能源结构调整加快推进,能源利用效率大幅提高,单位国内生产总值(GDP)碳排放实现年均下降超5%。2015年,中国发布国家自主贡献,承诺二氧化碳排放2030年左右达到峰值并争取尽早达峰,到2030年单位国内生产总值二氧化碳排放比2005年下降60%~65%,非化石能源占一次能源消费比重达到20%左右。2020年9月22日,习近平主席在第七十五届联合国大会一般性辩论上发表重要讲话,宣布“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,争取在2060年前实现碳中和。” 为了实现“2030年前达峰”和“2060年前碳中和”目标,当前迫切需要识别能源经济系统的转型路径、评估转型所需政策干预力度。为此,本研究综合国家自然科学基金重大项目“绿色低碳发展转型中的关键管理科学问题与政策研究”成果,采用中国—全球能源经济模型(China-in-Global Energy Model,C-GEM),同时结合电力、交通和建筑三大部门能源技术模型,综合考虑国内外社会经济技术等因素,重点围绕以下5个方面展开研究:(1)合理的碳中和碳排放轨迹;(2)碳中和对经济转型的要求;(3)碳中和对能源系统变革的要求;(4)实现碳中和所需的政策干预力度;(5)主要减排技术方案的减排贡献。
二、文献综述
(一)温升控制与碳排放轨迹 《巴黎协定》确定了将全球温升控制在2℃并争取控制在1.5℃之内的目标,而《IPCC全球升温1.5℃特别报告》指出,将全球变暖限制在1.5℃而不是2℃或更高的温度,可以避免一系列气候变化影响。例如,到2100年,将全球变暖限制在1.5℃而非2℃,全球海平面上升将减少10厘米(IPCC,2018)。因此,应识别全球实现2℃和1.5℃温升控制的碳排放轨迹,以2℃温控为底线、以1.5℃温控为目标确定我国合理的碳中和排放轨迹。 《IPCC全球升温1.5℃特别报告》(Rogelj et al.,2018)研究显示,要以大于66%的概率实现2℃和1.5℃温升控制目标,必须将2011~2100年间的全球累计排放分别控制在1万亿吨和4000亿吨CO2。为实现1.5℃温升控制目标,全球需要在土地、能源、工业、建筑、交通和城市方面进行“快速而深远的”转型。到2030年,全球CO2排放量需要比2010年的水平下降大约45%,到2050年左右达到“净零”排放(Rogelj et al.,2018)。Lurderer等(2018)联合5个重要能源模型组,基于减排发生在具有最佳成本效益的时间和地点的原则,研究得出全球需要在2020年左右实现碳达峰,而后加快减排,在2045~2060年间实现碳中和,而后实现负排放,方能以大于66%的概率实现1.5℃温控目标。由此可见,中国于2060年前实现碳中和的承诺与努力实现1.5℃温升控制目标是一致的。 对于中国的转型路径,清华大学联合我国十多家研究机构开展“中国长期低碳发展战略与转型路径研究”项目,研究了面向2050年的中国2℃情景和1.5℃情景,估算出2050年化石能源燃烧碳排放应分别为29和15亿吨CO2(解振华等,2020)。姜克隽等(2012)利用IPAC-AIM模型研究,估计出要实现2℃温控目标需要在2050年将碳排放控制在30亿吨CO2以内,要实现1.5℃温控目标则应在2050年实现负排放5.9亿吨(Jiang et al.,2018)。段宏波和汪寿阳(2019)基于中国能源—经济—环境系统集成模型(CE3METL),从排放路径、能源重构和经济影响3个维度对比分析了全球温控目标从2℃到1.5℃的战略调整对中国的长期影响。该研究认为,中等可能性的2℃目标下,中国的二氧化碳排放量将于2030年前达到峰值,2050年碳排放为70亿吨左右,而后快速减排至2060年的20亿吨;而1.5℃目标则要求碳排放从当下开始急剧下降至2025年20~40亿吨,且最早到2060年前后实现近零排放。在此基础上,Duan等(2021)进一步评估中国实现1.5℃目标所需的行动力度,综合AIM、GCAM、IMAGE、POLES等团队的研究结果,认为中国要实现1.5℃目标,需在2020年达峰,而后加快减排至2030年的30~80亿吨,于2050年降至(-10)亿~20亿吨。此外,能源基金会(2020)发布的《中国碳中和综合报告2020》对中国实现碳中和目标的关键年份(2035和2050年)进行分析,识别并建议电力、建筑、工业、交通、农业、林业和土地利用等关键部门的减排行动。虽然上述文献涉及中国的碳排放路径,但大多数为面向2050年的论证分析,仍然缺乏对 2060年前碳中和目标下的能源经济转型逻辑和能源经济协同转型路径的系统研究。目前国际上针对1.5℃温控目标的大多数研究,几乎都假设我国碳排放于2020年达峰后急剧下降,不符合我国国情。 (二)碳定价在能源经济转型中的作用 目前国际通行的碳减排政策主要包括能效与排放标准、公共技术研发和碳定价工具(包括碳税和碳排放交易体系)。政策分析人士普遍认为,要以经济有效的方式实现深度碳减排,覆盖全经济系统的碳定价工具将是政策的必要组成部分(Metcalf,2009;Kaplow,2010;Borenstein et al.,2019)。鉴于碳排放来源的多样性,传统的能效和排放标准设计挑战很大,且会造成不必要的高成本(Newell and Stavins,2003)。碳定价工具的关键优势在于它的灵活性以及可以带来经济总体成本效益最优的有效激励(Knittel,2019)。另外,碳定价还可以通过诱导气候友好型技术变革降低长期减排成本(Newell et al.,1999)。 国际社会广泛认可碳定价在能源经济转型中的核心作用并将其落诸实践。当前,全球已有61项碳定价机制正在实施或计划实施中,其中31项属于碳排放交易体系,30项属于碳税,共覆盖约120亿吨CO2,占全球温室气体排放量的约22%(世界银行,2020)。《巴黎协定》的189个缔约方提交的减排承诺中,有一半以上表示将使用碳定价工具。经过近十年的地方试点和建设准备,2021年7月我国全国碳排放权交易市场实现了电力行业的交易运行。这种基于市场的碳定价机制通过限制多个碳密集型行业的碳排放,也推动高碳排放产业的转型升级。 在模型研究中,碳定价可以用来定量显示减排所需的政策行动的整体力度。根据《IPCC全球升温1.5℃特别报告》,要实现2℃温控,2030年全球碳价水平需达到15~220美元/吨CO2,2050年则需达到45~1050美元/吨CO2,2070年将达到120~1100美元/吨CO2;相对的,要实现1.5℃温控,2030年全球碳价水平需进一步提升至135~6050美元/吨CO2,2050年则需达到245~14300美元/吨CO2,2070年将达到420~19300美元/吨CO2(Rogelj et al.,2018)。反映政策力度的碳价水平由于模型框架、减排目标和技术可用性预测等的不同而有所差别(Clarke et al.,2014;Kriegler et al.,2015;Rogelj et al.,2015a;Riahi et al.,2017;Stiglitz et al.,2017)。 目前已有部分模型研究对不同国家实现碳中和所需政策力度开展了评估。European Union(2018)基于价格导向的市场均衡模型PRIMES研究显示,欧盟要于2050年实现碳中和,碳价需达到350欧元/吨CO2(约为430美元/吨)。Oshiro等(2018)利用自下而上能源系统模型AIM/Enduse(Japan)分析日本于2050年实现碳中和所需的能源系统转型,计算得到碳减排成本在2050年高达2200美元/吨CO2。Climate Works Australia(2020)利用技术优化模型Aus-TIMES模型研究澳大利亚2050年实现碳中和所需的碳价:在强调技术创新的发展路径下,碳价水平约为200美元/吨CO2;在强调政策干预的发展路径下,碳价水平将达到233美元/吨CO2。总体而言,不同地区实现碳中和时所面临的碳价水平不同,与国家的发展水平、技术路径和资源禀赋密切相关。因此,在利用模型评估中国碳中和目标下的能源经济转型所需碳价水平时,需要充分考虑我国的经济系统和能源系统的特点。
三、模型介绍
为模拟我国绿色低碳转型的路径与政策,本研究采用自上而下的全球可计算一般均衡能源经济模型——中国—全球能源模型(China-in-Global Energy Model,C-GEM)进行情景模拟分析,并利用3个自下而上的技术模型REPO(China Renewable Electricity Planning and Operation Model)、CPREG(China Provincial Road Transport Energy Demand and GHG Emissions Analysis Model)和CBEM(China Building Energy Model)分别对电力、交通和建筑三大重点排放部门的能源消费、成本和技术选择情况进行校核验证,确保研究结果在经济和技术上都具有可解释性。详细的模型介绍参见《管理世界》网络发行版附录。 经过7年多的开发和应用实践,C-GEM的低碳技术表达和政策模拟功能日趋成熟,比较适合能源经济系统转型路径及所需政策力度的评估工作。一方面,C-GEM模型细致刻画了多种低碳、零碳和负碳技术。Qi等(2014a)细致刻画了风、光、生物质发电等11种先进能源技术,并评估可再生能源发展对中国能源和碳排放的影响。与此同时,Zhang等(2015)进一步改进了模型中煤电碳捕集及封存(CCS)技术和气电CCS等CCS技术的刻画,并研究得出当碳价高于35美元/吨CO2时,电力系统将开始部署CCS技术。为了进一步研究中国的深度脱碳路径,Huang等(2020)在模型中刻画了负排放技术——生物质碳捕集及封存(BECCS)技术,并评估可利用生物质资源量,研究显示,若2050年中国的碳排放空间为23亿吨CO2,BECCS需负排放6亿吨CO2;当排放空间为10亿吨CO2,则BECCS需负排放近10亿吨CO2。另一方面,C-GEM模型细致刻画了碳市场交易模块,并已经支撑了一系列评估转型所需政策力度的研究。Qi等(2016)评估中国延续《哥本哈根协议》减排承诺力度(即年均碳强度下降率为3%)所需的碳定价政策力度,研究显示,2050年要将碳排放控制在120亿吨,碳价需达到58美元/吨CO2。Weng等(2018)研究了中国实现《巴黎协定》气候承诺(即2030年碳排放强度相比2005年下降60%~65%)所需的碳价水平,研究显示,中国2021~2025年碳价达到8美元/吨CO2,2026~2030年达到12美元/吨CO2,则可以大于90%的概率实现气候承诺。 本节将对C-GEM、REPO、CPREG和CBEM这4个模型进行简要介绍。 (一)中国—全球能源模型(C-GEM) 中国—全球能源模型(C-GEM)是全球多区域递归动态可计算一般均衡(CGE)模型。该模型由清华大学能源环境经济研究所与美国麻省理工学院全球变化科学与政策联合项目合作开发,主要用于评估中国与全球低碳政策对经济、贸易、能源消费与温室气体排放的影响。模型以2014年为基年,并根据世界银行、国际能源署与中国统计局发布的相关数据将模型主要国家及地区的能源经济数据校核至2018年,随后从2020年起以5年为一个周期运行到2100年。 C-GEM模型涵盖全球17个区域与19个经济部门,在开发过程中注重对中国及其他发展中国家的经济特征表述,尤其对发展中国家能耗较高的工业部门细节与对能源系统低碳化转型十分重要的多种能源技术做出详细刻画。为了模拟研究碳中和路径,模型重点刻画了可再生能源技术和BECCS、空气直接碳捕集(DAC)、钢铁CCS、煤电CCS等多种CCS技术(Huang et al.,2020;Zhang et al.,2015;Qi et al.,2014a)。此外,模型参考发达国家的电气化程度和经验,通过动态调整主要部门电力与化石能源间的替代弹性来有效刻画我国未来电气化进程。 考虑到中国经济发展进入“新常态”,需求管理与供给侧改革不断深入,研究团队在C-GEM模型中特别考虑了中国未来经济转型的特点。C-GEM模型借鉴欧盟、日本、美国等国的经济增长和结构变化情况,结合中国供给侧结构性改革进程和扩大内需消费等政策措施,对模型动态过程中的消费和投资等结构进行外生动态演变,以模拟中国经济快速转型的特点,具体过程详见Zhang等(2016)和翁玉艳(2018)。 (二)自下而上的分部门技术模型 本研究采用由清华大学能源经济研究所开发的中国可再生能源电力规划及运行模型(REPO)对电力部门转型进行技术验证。该模型是反映中国电力系统运行特征和省际差异的分省电力系统规划模型,以最小化电力系统贴现成本为优化目标,能够得出满足约束条件下各类发电技术各模型模拟年份在各省的装机和发电量、省间传输线容量和碳排放等结果(熊威明,2016;Yang et al.,2018)。不同情景下,C-GEM模型将所模拟的全国电力需求和碳价反馈给REPO模型,REPO模型以上述指标为输入模拟得到电力结构并反馈给C-GEM,后者以此更新模型电力结构并得到新的电力需求和碳价,重新反馈至REPO模型,通过多次迭代校验,最终保证两模型电力结构、电力需求和碳价基本一致。 对于交通部门的转型路径,本研究应用自下而上的中国分省道路交通能耗和温室气体排放模型(CPREG)进行验证。该模型细致刻画了多种交通技术,通过外生的宏观经济、社会发展指标以及广义交通成本,采用弹性的方法预测中国未来客货运服务需求,运用离散选择的方法计算未来各种交通技术所承担的交通服务份额,并测算能耗及温室气体排放情况(Peng et al.,2018)。验证过程中,C-GEM模型将根据不同碳排放约束下CPREG模型的研究结果校核电动车发展规模,保证两个模型交通部门电气化水平和用能需求量可比。 对于建筑部门的转型路径,本研究则采用自下而上的中国建筑用能模型(CBEM)进行验证。该模型以大量统计、调研与实测数据为基础,构建了中国的典型建筑库;基于建筑全性能仿真平台,得到不同气象条件、建筑本体、设备性能及行为模式下的建筑全性能情况(能耗、碳排放、污染物、室内环境);同时基于多源数据分析得到不同典型建筑在我国的整体分布情况,从而获得我国建筑用能现状与历史;同时通过文献分析与趋势判断,研究不同驱动因素在不同假设下如何变化,从而得到不同情景下的建筑部门发展情况(Guo et al.,2021)。验证过程中,C-GEM模型将根据不同碳排放约束下CBEM模型的研究结果校核建筑用能规模,保证最终建筑部门用能结构和规模与技术模型协调一致。
全部回复(1 )
只看楼主 我来说两句 抢板凳楼主的资料很棒
回复 举报