土木在线论坛 \ 电气工程 \ 工业自动化 \ 变频器维修中的检测技巧

变频器维修中的检测技巧

发布于:2008-02-28 17:28:28 来自:电气工程/工业自动化 [复制转发]
变频器维修中的检测技巧
一、电阻器的检测方法与经验: 1、固定电阻器的检测。 A、将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。 B、注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。 2、水泥电阻的检测。 检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3、熔断电阻器的检测。 在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。 4、电位器的检测。 检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。 A、用万用表的欧姆挡测“1”、“2”两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。 B、检测电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆档测“1”、“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,这时电阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。当轴柄旋至极端位置“3”时,阻值应接近电位器的标称值。如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。 5、正温度系数热敏电阻(PTC)的检测。检测时,用万用表R×1挡,具体可分两步操作: A、常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。 B、加温检测;在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。 6、负温度系数热敏电阻(NTC)的检测。 (1)、测量标称电阻值Rt 用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点: A、Rt是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温度接近25℃时进行,以保证测试的可信度。 B、测量功率不得超过规定值,以免电流热效应引起测量误差。 C、注意正确操作。测试时,不要用手捏住
本文转自:赛尔社区. http://bbs.shejis.com/viewthread.php?tid=413999&fromuid=173651



  • jjj_1216
    jjj_1216 沙发
    很好。好像在哪看过。
    2008-05-10 21:14:10

    回复 举报
    赞同0
这个家伙什么也没有留下。。。

工业自动化

返回版块

17.92 万条内容 · 346 人订阅

猜你喜欢

阅读下一篇

变频器的几种控制方式

变频器的几种控制方式变频器对电动机进行控制是根据电动机的特性参数及电动机运转要求,进行对电动机提供电压、电流、频率进行控制达到负载的要求。因此就是变频器的主电路一样,逆变器件也相同,单片机位数也一样,只是控制方式不一样,其控制效果是不一样的。所以控制方式是很重要的。它代表变频器的水平。目前变频器对电动机的控制方式大体可分为U/f恒定控制 ,转差频率控制,矢量控制,直接转矩控制,非线性控制。 U/f恒定控制 U/f控制是在改变电动机电源频率的同时改变电动机电源的电压,使电动机磁通保持一定,在较宽的调速范围内,电动机的效率,功率因数不下降。因为是控制电压(Voltage)与频率(Frequency)之比,称为U/f控制。恒定U/f控制存在的主要问题是低速性能较差,转速极低时,电磁转矩无法克服较大的静摩擦力,不能恰当的调整电动机的转矩补偿和适应负载转矩的变化; 其次是无法准确的控制电动机的实际转速。由于恒U/f变频器是转速开环控制,由异步电动机的机械特性图可知,设定值为定子频率也就是理想空载转速,而电动机的实际转速由转差率所决定,所以U/f恒定控制方式存在的稳定误差不能控制,故无法准确控制电动机的实际转速。转差频率控制 转差频率是施加于电动机的交流电源频率与电动机速度的差频率。根据异步电动机稳定数学模型可知,当频率一定时,异步电动机的电磁转矩正比于转差率,机械特性为直线。 字串4 转差频率控制就是通过控制转差频率来控制转矩和电流。转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。与U/f控制相比,其加减速特性和限制过电流的能力得到提高。另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。然而要达到自动控制系统稳态控制,还达不到良好的动态性能。矢量控制 矢量控制,也称磁场定向控制。它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。由此开创了交流电动机和等效直流电动机的先河。矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流 , It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。矢量控制方法的出现,使异步电动机变频调速在电动机的调速领域里全方位的处于优势地位。但是,矢量控制技术需要对电动机参数进行正确估算,如何提高参数的准确性是一直研究的话题。字串6 直接转矩控制 1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制理论,该技术在很大程度上解决了矢量控制的不足,它不是通过控制电流,磁链等量间接控制转矩,而是把转矩直接作为被控量来控制。转矩控制的优越性在于,转矩控制是控制定子磁链,在本质上并不需要转速信息,控制上对除定子电阻外的所有电机参数变化鲁棒性良好,所引入的定子磁链观测器能很容易估算出同步速度信息,因而能方便的实现无速度传感器,这种控制被称为无速度传感器直接转矩控制。变频器的选择风机和泵类负载 在过载能力方面要求较低,由于负载转矩与速度的平方成反比,所以低速运行时负载较轻(罗茨风机除外),又因为这类负载对转速精度没有什么要求,故选型时通常以价廉为主要原则,选择普通功能型变频器。恒转矩负载 多数负载具有恒转矩特性,但在转速精度及动态性能等方面要求一般不高,例如挤压机,搅拌机,传送带,厂内运输电车,吊车的平移机构,吊车的提升机构和提升机等。选型时可选V/f控制方式的变频器,但是最好采用具有恒转矩控制功能的变频器。要求响应快的系统 所谓响应快是指实际转速对于转速指令的变化跟踪得快,从负载

回帖成功

经验值 +10