土木在线论坛 \ 环保工程 \ 水处理 \ 急急!急急!急需大家的帮助!低温低浊水

急急!急急!急需大家的帮助!低温低浊水

发布于:2008-02-18 20:45:18 来自:环保工程/水处理 [复制转发]
给水厂藻类太多,进水是低温低浊,需要对工艺进行优化,国内国外有没有什么先进的技术可以解决?希望各位兄弟姐妹能帮帮忙。谢谢!

全部回复(10 )

只看楼主 我来说两句
  • mengyan197206
    mengyan197206 沙发
    低温低浊水处理技术的研究应用
    郭玲,陈玉成
    (1西南大学资源环境学院2重庆市自来水公司,3重庆市农业资源与环境研究重点实验室)
    摘要:低温低浊水处理是净水技术的一个难点,从水温、水中微粒浓度及有机污染物三个方面分析了这种水质难于处理的原因。基于众多水处理工作者的试验研究与实践,对多种低温低浊水处理技术、药剂优选技术、泥渣回流技术、微絮凝技术、气浮技术与强化混凝技术进行了综述。
    关键词:低温低浊水;处理;混凝;浊度

    1 引言
    低温低浊水的处理是给水处理工程中的难题之一,一直困扰着给水界。给水处理领域中对低温低浊水尚没有确切的定义,我国北方气候寒冷,冬春季节水温可降至0~2℃,浊度降到10~30NTU(有时10NTU以下);我国南方地区以长江水系为代表每年随着冬季的到来,水温和浊度逐渐下降,水温一般在3~7℃,浊度一般在20~50NTU之间变化,把每年11月至次年3月温度低于10℃或浊度低于30NTU的地表水称为低温低浊度水。这种低温低浊水很难处理,即使增大混凝剂投加量,净化后的水质仍很难达到国家饮用水的标准。为此,我国通过20多年的科学试验和生产实践,基本攻克这一技术难关,获得了显著的成果。
    2低温低浊水难以净化的原因
    2.1水温的影响
    低温对混凝剂水解速率影响很大,低水温使水解反应速度减缓,在常见的混凝剂中,铝盐较铁盐受水温影响大,以常用的硫酸铝为例,当水温为0℃时,硫酸铝水解速率只是5℃时的2/3~1/2。低温水的粘度大,液层间的内阻力大,单位时间单位体积颗粒的碰撞次数减少,不利于水中微小颗粒碰撞、凝聚和絮凝体的成长,絮凝速率和颗粒沉降速度也减小。
    低水温减弱微粒的布朗运动,水分子间的热运动能量减弱,不利于微粒间碰撞凝聚。水温低,胶体的溶剂化作用增强,颗粒周围水化膜加厚,粘附强度降低,妨碍其凝聚。低温时气体的溶解度大,形成的絮凝体密度降低,溶解气体大量吸附在絮凝体周围,也不利于其沉淀。
    2.2水中微粒浓度的影响
    低温条件下源水浊度越低,给水工艺在运行中的药耗越高,处理难度也越大。研究认为在任何水体中,保证单位体积内颗粒的数量和有效碰撞的次数是至关重要的,而良好的混凝处理效果是基于混凝过程中微粒具有较多的碰撞机会,由于低浊时单位体积内颗粒密度小,水中微粒浓度很低,导致部分微絮体失去了碰撞凝并的条件,势必影响混凝处理过程的正常进行。
    2。3水中有机污染物的影响
    国内外的研究结果表明,地表水中的有机物对水体中胶体的稳定性具有重要影响,有机物显著地增加了胶体的表面电荷,影响胶体颗粒间的结合,低温低浊水中的微粒尺寸都较小使这种作用更明显。低温低浊水中一般粘土、砂等铝硅酸盐矿物很少,而有机物颗粒在总颗粒中所占的比例很大。研究表明,源水中颗粒物质表面上的负电荷由溶解性有机物吸附所占的份额是粘土等矿物所占份额的100倍。因此通过加大混凝剂的投加量,中和低浊水中颗粒物质表面上的负电荷来达到絮凝目的是很难的。
    3 低温低浊水处理技术
    3.1 合理选择混凝剂与助凝剂
    3.1。1 优选混凝剂
    目前低温低浊水处理的混凝剂一般可采用聚合氯化铝或硫酸铝。张海龙等通过试验比较了复合铝铁与硫酸铝对低温低浊水的除浊效果,结果表明:用复合铝铁代替硫酸铝处理不仅除浊效果好,可明显延长滤池的工作周期、节省自用水量,并且对净水pH值及剩余铝均有好处。王红宇等用聚合氯化铁(PFC)絮凝处理低温低浊水的研究表明:PFC比传统混凝剂FeCI3处理低温低浊水更有效,且低温减少了其用量。王德英等用聚硅酸硫酸铝(PSAA)作混凝剂处理低温低浊水的试验表明:该混凝剂用量少,pH适用范围较宽,具有良好的混凝性能,能有效处理低温低浊水。胡子斌等用自制的聚硅酸铁(PFS)与硫酸铁分别作混凝剂处理低温低浊水,对比实验表明:与投加硫酸铁或硫酸铁2聚硅酸助凝剂相比,PFS投量少,投加范围宽,形成矾花迅速而粗大,沉降速度快,能有效地处理东北地区的低温低浊水。
    3.1.2投加助凝剂
    对于低温低浊水处理,用单独的铝及铁盐作混凝剂效果并不好,因为水温低,形成的强水化氢氧化物比较稳定,而絮凝体产生的速度却很慢,导致了混凝剂的大量使用。目前,很多水厂都配合采用助凝剂。投加高分子助凝剂,不但提高了凝聚效果,还可减少混凝剂用量达30~40%以上,但投加时应注意合理的选择混凝剂和助凝剂的投配比例和投加点。
    目前国内高分子助凝剂主要有聚合铝,活化硅酸(水玻璃),聚丙烯酰胺等,其中应用最多的是活化硅酸。王银涛等比较了投加聚铝PAC+改性活化硅酸与单独投加PAC投加PAC+活化硅酸净化低温、低浊水的效果,生产应用表明,使用改性活化硅酸不仅除浊效率高,且可提高30%的产水量,降低50%的混凝剂投加量,降低净化成本约15%。胡万里等用骨胶处理冬季松花江水的研究表明,骨胶作为助凝剂与硫酸铝共同使用,处理低温低浊水很有效。王桂荣等研究了聚合二甲基二烯丙基氯化铵(HCA)、活化硅酸、聚丙烯酰胺三种不同助凝剂处理汉江水源冬季的低温低浊水的效果,结果表明先加助碱剂以调节pH值,再用(HAC)与聚合氯化铝(PAC)配伍使用,大大改善了混凝效果,较单独投加PAC,,可大幅降低沉淀出水浊度(出水浊度2.2NTU左右),且聚合铝投加量比使用另两种助凝剂(出水浊度约3.5NTU)降低了40%左右,该药剂配制、投加方便,可广泛应用于低温低浊水的处理。
    3.2泥渣回流法
    当原水浊度对水处理影响颇大时,采取污泥回流法可以取得较好效果。泥渣回流技术是利用机械搅拌加速澄清池的泥渣回流特点来增加原水浊度,弥补冬季原水浊度低的缺陷,以增加水中胶体杂质微粒碰撞的机会,从而加快絮凝作用,提高絮凝反应效率,以达到净化低温低浊水的目的。泥渣回流除能提高原水中颗粒浓度,增加颗粒碰撞机会,提高混合反应速率外,还可充分利用沉淀池污泥的剩余吸附能力,提高絮凝效率。机械循环澄清池、水力循环澄清池和向反应池中投加粘土等都具有这种效果。刘继平等试验发现,将沉淀池的污泥回流入混合设备,可提高低温低浊水反应沉淀效率,降低混凝剂用量,这实际相当于提高了进水浊度,同时利用了沉淀池污泥的剩余吸附能力。
    3.3微絮凝接触过滤法
    又称直接过滤法,是省去沉淀过程而将混凝与过滤在滤池内同步完成的一种新型接触絮凝过滤工艺技术。微絮凝接触过滤法的原理是:滤池上层滤料空隙甚小,滤料表面有一定的化学特性,在源水中投加混凝剂、助凝剂后,立即直接进入滤池,在滤料层中形成微小絮凝体,其中一部分被截留,另一部分被滤料吸附,呈现具有微絮凝接触吸附过滤作用,从而实现除低浊的目的。絮凝剂的选择应用直接影响着微絮凝直接过滤工艺的实际运行效果及运行费用。Dempsei等报道了聚合铁去除浊度、富里酸、低温、低浊时比铝盐更有效且用量少。李桂平研究表明,采用微絮凝深床直接过滤工艺,聚合铁比聚合铝形成絮体更快,絮体更密实,抗剪切力更好,滤池的水质周期和水头周期更长,且达到相同处理效果时,聚合铁的投药量和所需床深都明显低于聚合铝。李冬梅等采用微絮凝深床直接过滤技术,分别用无机混凝剂和阳离子高分子聚合物处理低温低浊水,试验表明:当水温t>4~5℃与浊度Co<4NTU时,不宜单独采用无机混凝剂AS、PAC,而投加阳离子高分子聚合物作主絮凝剂或助凝剂不仅能优化出水水质,延长滤程,提高产水量,且能显著降低药剂成本,减少污泥体积。另有研究表明不投加助凝剂也能实现微絮凝接触过滤,吕春生等发展了微絮凝拦截沉淀池技术(用一种耐浸、高吸附的天然植物作为拦截材料)来处理低温低浊水,该技术实现了颗粒的吸附碰撞、接触凝聚和聚集沉淀的多过程协同作用,具有高效除浊效果。胡江泳等用生物陶粒做填料采取接触氧化法处理低温低浊微污染源水,取得较好效果。
    3.4 溶气浮选法
    我国东北地区寒冷季节长,但在雨季河水浊度又可高达几千度,给水处理带来困难。根据这一特点,研究开发了一种新型水处理构筑物———浮沉池,它将气浮和沉淀相结合,既利用气浮处理低温低浊及高藻时的良好效果,也可用沉淀来处理较高浊度的原水。这种池型已在东北地区水厂中采用近10年,取得了较好效果。该法是利用压力溶气水骤然减压释放大量的微细气泡与原水加药混凝产生的絮体粘附在一起,使其整体密度小于水的密度,使带气絮体浮至水面,形成浮渣,由刮渣机清除,达到除浊目的。王承春等采用在沉淀池后增设部分回流平流式溶气浮选池对牡丹江冬季的低温低浊水(0~3℃、30。8~46。2NTU)进行处理,其气浮池出水浊度可达到小于2。3NTU。孙志民等通过小型生产性试验发现,新型侧向流斜板浮沉池处理低温低浊水时,运行气浮工艺,其出水浊度、色度、CODMn以及投药量等指标均优于沉淀工艺。
    3.5其他强化混凝处理技术
    3.5.1高锰(铁)酸盐复合药剂法
    前已述及,有机物的存在使低温低浊水更难以处理,而预氧化处理能够有效提高常规混凝工艺效率,其主要原因在于氧化剂能破坏无机胶体颗粒表面的有机涂层,从而降低其稳定性。高锰(铁)酸盐复合药剂法正是基于此点提出的。该药剂由高锰(铁)酸钾(主剂)和其它多种药剂(辅剂)组成,在处理微污染水体中表现出极好的协同作用,针对低温低浊水体,其助凝、助滤、去除有机污染物的效果尤其明显。马军等用具有一定氧化能力的高铁酸盐复合药剂作混凝剂,强化混凝处理低温低浊的松花江水,沉淀后的浊度可降到2~4NTU,滤后浊度达到小于0.5NTU。梁恒等考察了高锰酸盐复合药剂(PPC)安全强化低温低浊水的处理效能,试验表明:PPC预处理技术在助凝、助滤、去除水体中有机污染物等方面都具有比预氯化更好的处理效果,该项技术对于低温低浊水处理具有很好的应用前景。
    3.5.2微蜗旋混凝低脉动沉淀技术
    该技术利用微蜗混合器造成高比例高强度的微蜗旋,其强烈的离心惯性效应可保障混凝剂瞬间进入水体细部,完成宏观和亚微观传质扩散,使胶体脱稳迅速、充分,从而强化了混合反应和混凝过程。赫俊国等运用微蜗旋混凝低脉动沉淀技术,对松花江和嫩江两大水系低温低浊水进行试验表明,该新工艺较原工艺处理量提高了30.8%,投药量减少26.7%,新工艺沉淀池出水浊度在3NTU以内(原工艺沉淀池出水浊度在5.7~11.7NTU)。
    3.5.3活性砂絮凝工艺
    20世纪60年代,匈牙利学者以高分子聚合物活化了的粉砂做絮凝的悬浮接触介质,进行了强化絮凝的研究,目前此项研究成果已在法国应用。该工艺是在混凝反应阶段投加高分子活化粉砂,以克服水中杂质颗粒在数量和质量上的不足和低温的不利影响;同时利用高分子良好的吸附架桥作用,形成以粉砂为核心的密度较大的絮体颗粒,改善澄清效果。姜安玺等通过在混凝阶段投加经高分子聚合物活化的粉砂作絮凝介质处理低温低浊水的试验发现,活性粉砂和聚合铝联合使用比单独用聚合铝出水效果好,可明显改善低温低浊水处理效果,具有良好的应用价值。
    3.5.4 混凝设施的强化
    高效、经济的混凝剂对混凝作用固然重要,但同时须在水处理设施上提供良好的混凝条件以利后续工艺的高效运行。目前应用于许多水厂的旋流—网格絮凝池即能达到这种作用。该设施先使加药原水流入旋流器使水流形成有序涡旋,增加颗粒间接触和碰撞几率,形成凝聚颗粒中心体,为后续凝聚颗粒成长、密实奠定基础;后进入小网眼的网格反应池,以破碎大涡旋,增加水流中微涡旋比例,为颗粒间接触粘附创造条件,同时多层网格,限制了凝聚颗粒的不合理长大,最大限度地消除了微小颗粒不易碰撞凝聚,或凝聚不稳定等因素;且凝聚颗粒在不断接触、破碎等反复碰撞时,可去除低温水或混凝剂水解反应所夹气泡,增加颗粒密实度,避免了轻、细颗粒的形成。孙吉吉应用旋流—网格混凝设施处理低温低浊水的试验表明,其在处理低温、低浊水中具有良好的混凝效果,出水效果稳定,产水效率高。
    4 结语
    近10年来,随着人们对水处理认识的不断提高,低温低浊水处理技术备受关注,如何更有效地处理低温低浊水,越来越引起重视。国内现有的几种低温低浊水处理技术,都各有优势,应用时要根据条件因地制宜选择应用;设计时要通过技术经济比较,择优选用。
    2009-06-29 06:01:29

    回复 举报
    赞同0
  • mengyan197206
    mengyan197206 板凳
    强化混凝处理低温低浊北渡水研究
    李潇潇 ,张跃军 ,赵晓蕾 ,孙彬 ,苏功建 ,陈雨
    (1.南京理工大学化工学院,江苏南京 210094;2.波市自来水总公司,浙江宁波315041;3.南京市自来水总公司城南水厂,江苏南京210036)
    [摘要]报道了对低温低浊的宁波北渡水进行强化混凝处理时,混凝剂及混凝搅拌条件的优化选择过程及结果。通过混凝烧杯实验.比较了聚合氯化铝、硫酸铝、聚合硫酸铁、两种市售药剂对该水的混凝脱浊效果,同时考察了强弱两种混凝搅拌条件对混凝效果的影响。
    【关键词]低温低浊水;混凝剂;强化混凝;脱浊
    [中图分类号】x703 [文献标识码】B [文章编号】1005—829X(2007)07—0042—03
    低温低浊水是给水处理工程中难处理的水质之一,采用常规混凝工艺处理,经常达不到后续水处理设备的进水水质要求。国内外常用的低温低浊水处理技术有气浮技术、泥渣回流技术、微絮凝技术、磁力分离技术等⋯。但由于这些方法工艺操作复杂、成本高而不能推广使用。强化混凝法特点是处理成本低、效果好、操作和维修方便、选用了最适用于原水水质的混凝剂及混凝搅拌条件 。
    宁波某水厂制水能力35万t/d,其水源取自北渡河的上游。北渡河引水为宁波近郊水库的原水,水源经河段流入水厂,该水源在冬春季受污染较小,浊度<3 NTU,温度<10 ℃。此类水源很难处理,即使增大一般铝盐混凝剂的投加量。净化后的水质仍很难达到国家饮用水的标准,给宁波某水厂自来水生产带来了较大困难。
    笔者通过混凝烧杯实验。比较了在强弱两种混凝搅拌条件下聚合氯化铝(PAC)、硫酸铝(AS)、聚合硫酸铁(PFS)、市售药剂1、2对低温低浊北渡水的混凝脱浊效果。为宁波某水厂的实际生产提供了参考。
    1 试验部分
    1.1 仪器与试剂
    仪器:散射式浊度仪,Qz201型,苏州青安仪器有限公司生产;六联程控搅拌仪,TA6一Ⅱ型,武汉恒岭有限公司生产。
    药剂:PAC,液体,AI203质量分数10%;PFS,液体,Fe 质量分数12% ;AS, 固体,Al2O3质量分数15.8%;市售药剂1,Al2O3质量分数5%;市售药剂2,Al2O3,质量分数10%。以上药剂均为工业品。药剂的配制:以Al2O3,或Fe3 计,把各无机药剂稀释为1%的溶液投加。
    北渡水水样取自宁波某水厂水样取水点,一次取足量水样。在10~20 min内取完。以尽量保证水质的一致性。原水温度6~8 ℃,浊度为2.0~2.8 NTU。
    1.2 混凝除浊性能评价
    1.2.1 基本操作方法
    在一组烧杯中加入1 000 mL水样后置于六联搅拌仪中。按一定程序搅拌后静置沉淀10 min和30 min.于液面下约2 cm处取上清液测定其浊度。
    1.2.2 混凝搅拌强度的选择
    选择与宁波某水厂实际生产混凝强度较为接近的搅拌条件:以200 r/min搅拌15 s时。投加混凝剂。先以200 r/min搅拌1 min.再以60 r/min搅拌9 min,最后沉淀。此条件定为搅拌条件1。即弱混凝搅拌条件。
    另外。选择一个相对较强的混凝搅拌强度与前面的搅拌强度进行对比。以考察两个混凝条件对混凝脱浊效果的影响。该搅拌条件为:以300 r/min搅拌15 8时,投加混凝剂。先以300 r/min搅拌3 min,再以100 r/min搅拌3 min。再以30 r/min搅拌
    3 min,最后沉淀。此条件定为搅拌条件2。即强混凝搅拌条件。
    2 结果与讨论
    2.1 弱搅拌条件下各混凝剂的脱浊效果
    选取目前国内给水处理最为常用的几种无机混凝剂(PAC、PFS、AS以及宁波市水厂所用的两种市售药剂(1、2)对低温低浊北渡水进行脱浊处理,按搅拌条件1进行混凝烧杯实验,分别于沉淀10 min与30 min时取上清液测浊度,结果见图1、图2。

    从图1和图2可以看出。在弱搅拌条件下。沉淀10min。各混凝剂对北渡水基本没有脱浊效果,剩余浊度甚至还高于原水浊度。沉淀30 min.除PFS在投加质量浓度为3 mg/L时达到1.5 NTU的最低剩余浊度外,其余混凝剂脱浊效果均不明显。冬季北

    渡水呈典型的低温低浊水特征。其难以混凝处理的原因有两个方面:一方面。较高的絮凝速度是迅速生成较大絮凝体的必要条件,凝聚速度取决于单位时间内的颗粒碰撞次数与有效碰撞率,而颗粒碰撞次数又与其运动速率有关。由于冬季北渡水水温较低。水分子问的热运动能量减少,颗粒间的碰撞机会也就减少,因此凝聚化学反应速度也随之减慢。而此时北渡水水质好,浊度较低。水中颗粒数目少,所以碰撞的次数也少。另一方面。水温对混凝剂的水解反应有明显的影响,低水温使水解反应速度减缓。此时混凝剂的分散性较差.混凝剂与胶体颗粒的接触机会减小。电中和作用降低。不利于絮凝体的形成和长大。由于不能沉淀的微小絮体引起更强的光散射。导致剩余浊度还可能会高于原水浊度。搅拌条件1的特点,在于快搅强度不高。时间短,而慢搅时间较长,着重于慢速搅拌,总体来说搅拌强度较低。一般来说。快速搅拌有助于药剂的迅速分散和反应的发生。慢速搅拌有利于吸附作用的进行。对低温低浊北渡水来说,由于搅拌条件1快搅强度小,时间短。混凝剂的分散反应不充分。由于混凝剂分散不好,水解产物形成不完全。慢速搅拌下的吸附也就难以进行。因此在弱搅拌条件下。各混凝剂处理后絮凝体较疏松.沉降性能差,脱浊效果也就差。除PFS在投加量为3 mg/L时达到1.5 NTU的最低剩余浊度。其余各混凝剂处理后浊度相对于原水均不同程度地有所上升。
    2.2 强搅拌条件下各混凝剂脱浊效果
    使用上述5种混凝剂,按搅拌条件2进行混凝烧杯实验,分别沉淀10 min和30 min,取上清液测得浊度。结果见图3、图4。从图3、图4可以看出,在强搅拌条件下,沉淀10 min或30 min后各种混凝剂大都存在一段最佳的投药范围。在各自的最佳投药剂量下.可达到各自所能达到的最好脱浊效果。投加

    PFS质量浓度1.75 mg/L处理后沉淀30 min所能达到的最低剩余浊度在0.5 NTU以下,远低于搅拌条件1下沉淀30min投加量为3mg/L时达到的15NTU的余浊,这充分说明,在搅拌条件2下的混凝脱浊效果要明显优于在搅拌条件1下的混凝脱浊效果。其原因可能是:搅拌条件2相对于搅拌条件1快搅强度大,时间长,同时存在中速搅拌的过渡。K.Ebie等研究发现,较高的快速搅拌对混凝效果的影响较大,在低温下,快搅强度大,可使混凝剂迅速分散于水中,并加快水解反应的进行,促进了小颗粒的脱稳过程。同时也促使水中较大颗粒之间的碰撞和接触。也就有利于絮体的成长。因此,适当强的混凝搅拌强度有利于低温低浊水的混凝,可以在一定程度上改善各混凝药剂对低温低浊北渡水的混凝脱浊效果。
    2.3 各药剂混凝脱浊效果分析
    5种混凝剂中,除了PFS以外,其他4种均是含有铝盐的混凝剂.其中两种市售药剂为复合聚铝产品。各药剂在不同混凝强度下,在最佳投药量下所能达到的最低剩余浊度见表1。由表1和图1~图4可看出,PFS的最佳投药范围相对于其他无机混凝剂都要宽,在1.75~3 mg/L的药剂投加量下,剩余浊度均可达到0.5 NTU左右。因此,相比于其他铝盐混凝剂.PFS在处理低温低浊北渡水上有较为明显的优越性。
    从水溶液化学与絮凝作用上讲,聚合铝盐和聚合铁盐混凝剂具有许多共性。它们都是以其水解产物对水中颗粒或胶体污染物进行电中和脱稳、吸附架桥或黏附卷扫而生成粗粒絮凝体由重力作用沉淀而发挥脱浊作用。铁盐和铝盐均具有强的水解、聚合及沉淀能力,但是,铁盐生成的最终产物氢氧化铁相对密度较大,表面积大,极具吸附力,而且,铁盐的水解较铝盐受温度影响要小。在处理低温低浊北渡水时,PFS水解速度比铝盐快,同时形成的絮体吸附量大、结构紧凑致密、强度大,混凝沉降物沉降速度快,从而大大提高了混凝效果。
    3 结论
    比较了聚合氯化铝(PAC)、硫酸铝(AS)、聚合硫酸铁(PFS)、两种市售药剂对低温低浊北渡水的混凝效果.同时考察了强弱两种混凝搅拌条件对混凝效果的影响,得到如下结论:
    (1)对浊度为2.5 NTU左右、温度为6℃的低温低浊北渡水,在原有搅拌条件下,除PFS在投加质量浓度为3 mg/L时能将浊度降至1.5 NTU。其他混凝剂均没有明显的脱浊效果。因此,对低温低浊北渡水,在混凝强度无法改变的情况下,用PFS作混凝药剂能取得一定的混凝脱浊效果。
    (2)在强搅拌条件下,各混凝剂均有各自的最佳脱浊投药范围。在处理低温低浊北渡水时,适当加强

    混凝强度。选择适合该水源水质的混凝剂可利于其混凝过程中微细颗粒之间的碰撞、吸附和聚沉,达到较佳的混凝脱浊效果。
    2009-06-27 16:37:27

    回复 举报
    赞同0
加载更多
这个家伙什么也没有留下。。。

水处理

返回版块

42.04 万条内容 · 1398 人订阅

猜你喜欢

阅读下一篇

!讨论)苦咸水加热设备选材

根据部分资料,氯化物含量超过2000ppm,须采用904以上的钢材,部分要求采取钛板!不知316L材质行不?欢迎大家给个参考!

回帖成功

经验值 +10