土木在线论坛 \ 电气工程 \ 供配电技术 \ 最全建筑电气设备发热计算公式汇总及应用

最全建筑电气设备发热计算公式汇总及应用

发布于:2017-05-25 15:03:25 来自:电气工程/供配电技术 [复制转发]
最近,赤裸裸的高温告诉我们
夏天真的来了!
相信有很多小伙伴多少会遇到一些高温故障问题
小编特意找了几个设备散热的计算公式
希望对大家有所帮助啦~

一、发电机组发热量
发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,另一是发电机组的冷却循环风的漏风所带来的热量。

大、中型发电机组的冷却方式通常采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走。根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃。

发电机机壳的散热量可以按下式计算:
1.jpg

发电机的漏风散热量可以按下式计算:
2.jpg

根据发电机组内部的冷却风温和发电机的表面积,我们不难计算机组壳体的传热量。但漏风热量的计算上却有较大的差异,随着机械制造技术的不断提高,特别是空气冷却器的效率的提高,发电机组的冷却循环风量各个厂商有较大区别。例如按机电设计手册计算,30万KW机组的冷却循环风量约为200m3/h,但多数国际厂商提供的冷却风量约为120m3/h,这就给计算结果产生较大的出入。机组的冷却风量不仅和机组的容量有关,而且和机组的水头、转速、尺寸有关。一般情况下,冷却风温越低,发电机的线圈温度也越低,发电机的效率就越高,但是冷却风温受冷却器的布置尺寸影响,冷却器大,机组的制造难度相对增大,经济性下降,冷却风温不可能无限降低,机组制造厂设计时考虑一个经济区域,达到机组的最大性价比。因此,在实际的设计计算中,应由发电机厂商提供冷却循环风量参数对漏风热量加以核算。

二、 变压器发热量
变压器散热散热主要指变压器内部的能量损耗,由铜损(电阻损耗)和铁损(铁磁损耗)两部分组成,其中铜损是随负荷大小而变化,而铁损与负荷的大小无关,可以看成一定值。通常将额定负荷时的铜损定为短路损耗,额定电压下的铁损定为空载损耗。

自冷、风冷和干式变压器的损耗,全部散发到周围空气中,而水冷变压器的损耗则大部份由水冷却系统带走,一小部份由于油温高于周围空气温度而将热量散入空气中。

一般情况下,封闭厂房、地下厂房和抽水蓄能电站,布置于厂房内部或地下的主变多采用库水冷却的主变,而电站中的其他变压器还有厂用变、照明变、事故变、励磁变等,多采用风冷或干式变压器。

风冷变压器的散热量,简单地可以按下式计算:
3.jpg

水冷变压器的散热量可以按下式计算:
4.jpg

电站的水冷却主变,受到冷却水温和水冷却器效率的影响较大,特别是抽水蓄能电站,由于库容较小,冷却水温受季节的影响较大,应按正常运行时,可能产生的最高水温核算变压器的散热量。

三、 母线、电缆发热量

在电站中,发电机和变压器之间的连接多用自冷却式封闭母线。母线的发热量包括母线的功率损耗发热和外壳感应散热两部分。

由于主线的两端分别分别连接发电机和变压器设备,实际上母线与外壳之间的空气是封闭的,外壳起到一个保护和屏蔽电磁波的作用,以减少母线电磁场对周围电气设备和环境的影响,并没有减小母线的散热。母线的功率损耗散热传给母线和外壳间的空气,然后通过外壳壳体传入环境。而外壳感应散热则直接传入环境。

母线功率损耗引起的散热量可以按下式计算:
5.jpg

母线外壳感应散热量可以按下式计算:
6.jpg

四、 电抗器发热量

电抗器用于较大容量的配电装置中,起到限制短路电流的作用,也可以用于整流装置中作滤波电抗器。

电抗器的散热量可以按下式计算:
7.jpg

电抗器在额定功率下的功率损耗(Kw),根据额定电流、额定电抗和型号确定。
电抗器是由绕组组成的,发热特性是热容量和发热量较大,达到稳定发热量需要一段时间。如果是长期运行的电抗器,其发热量是稳定的,如果是间歇运行的电抗器,应按运行时间和电抗器的发热特性曲线确定发热量。

五、 高、低压盘柜发热量

高压配电盘柜的散热量可以按下式计算:
8.jpg

高压开关柜分为进线开关柜和馈电开关柜,一般说来进线开关柜的发热量要比馈电开关柜的发热量大。

低压配电盘柜的散热量可以按下式计算:
9.jpg

由于电站内各种盘柜的用途不同,盘柜的工作电流不同,一般说来,工作电流越大,盘柜内的电器元件发热量也越大。对于集中布置的配电盘柜尽可能由设备制造商提供发热量较为准确。

特别的,对于重要的配电盘柜,由于制造商对盘柜内的电气元件的保护,防止运行湿度过大,绝缘性能的下降,在盘柜内本身另设有电加热器。一般每只盘柜在0.3~0.5Kw左右,集中布置的继电保护室等应加以考虑。

六、 SFC静态变频启动装置发热量
SFC称为静态变频启动装置,主要用于抽水蓄能电站的机组抽水工况的启动。它由输入电抗器、输出电抗器、滤波器、功率柜和直流电抗器组成。

某个单机容量30万千瓦的抽水蓄能电站,根据外商提供的SFC装置各设备的容量如下:
SFC装置的容量








序号
设备名称
运行时
停止时
1
输入电抗器
27Kw
3Kw
2
输出电抗器
63Kw
0
3
滤波器
83Kw
28Kw
4
功率柜
15Kw
6Kw
5
直流电抗器
200Kw
0
6
合计
388Kw
37Kw

我们可以看出,如果按照满负荷计算,SFC装置的热量高达388Kw。按照一些已运行的抽水蓄能电站的实际运行分析统计,一台机组的启动,从静止拖动到并网时间仅需240秒,六台机组的启动时间约为25分钟。根据外商提供的SFC装置运行特性曲线,输入电抗器、输出电抗器和直流电抗器运行25分钟,发热达到额定发热量的20%,滤波器、功率柜发热达到额定发热量的70%左右。按此计算SFC装置的发热量约为126.6Kw,是额定发热量的32.6%。

SFC装置的发热量和SFC的容量、运行时间有极为密切的关系,如果要较为准确的确定设备发热量,应请有关制造商提供设备的运行特性曲线,然后根据设备的容量和运行时间确定。

七、 照明设备发热量
大、中型电站随着建筑装修景观设计对灯光的需求,照明功率有增加的趋势。虽然照明设备的发展,电站的照明应用从白炽灯和荧光灯向碘钨灯和金卤灯等高亮度灯源转变。但照明设备散热量属于稳定得热,只要电压、功率稳定,散热量是不变化的。照明所耗电能的一部分直接转化为热能,此热能以对流、传导和向周围散出。光能以红外辐射方式向外辐射,但红外辐射不能直接被空气吸收,而是透过空气被周围物体吸收,尔后再给予空气。转化为光的那部分也是先射向周围物体,被物体吸收后再转化为热能,再以对流、传导或辐射等方式传给空气和其他物体。

照明发热量为:
10.jpg

一般情况下,全厂的照明发热量约为照明变压器容量的80%左右。但随着电站自动化程度的提高和无人值班的推广,厂房内部的实际照明设备开启情况变化较大,可考虑正常运行时照明的利用系数。 来源:技成培训

9.jpg


10.jpg


1.jpg


2.jpg


3.jpg


4.jpg


5.jpg


6.jpg


7.jpg


8.jpg

全部回复(16 )

只看楼主 我来说两句
  • 门倩
    门倩 沙发
    好资料,谢谢楼主分享。
    2017-05-31 10:25:31

    回复 举报
    赞同0
  • 小小菜鸟12301
    实用类的书,最好多点
    2017-05-29 22:01:29

    回复 举报
    赞同0
加载更多

供配电技术

返回版块

97.85 万条内容 · 2067 人订阅

猜你喜欢

阅读下一篇

DLT 1459-2015 矿物绝缘油中金属钝化剂含量的测定 高效液相色谱法

DLT 1459-2015 矿物绝缘油中金属钝化剂含量的测定 高效液相色谱法

回帖成功

经验值 +10