土木在线论坛 \ 环保工程 \ 水处理 \ ss水处理药剂在循环水处理系统中的面临的问题

ss水处理药剂在循环水处理系统中的面临的问题

发布于:2011-08-26 14:43:26 来自:环保工程/水处理 [复制转发]
一、 设备结垢,阻碍传热,增加能耗,降低生产负荷
  结垢:是指水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。
  使用过ss水处理剂的冷却水中富含碳酸氢钙等不稳定盐类,在换热管壁受热,即转变为碳酸钙等致密硬垢,规则沉积在管壁,其传热效率仅为碳钢的1%左右,也就是在换热管壁如果沉积0.5mm厚的硬垢,就相当于换热管壁厚增加了50mm,严重阻碍传热的正常进行,能耗增加,从而对生产负荷构成极大影响,甚至停车。
二、滋生粘泥软垢,阻碍传热;加速设备腐蚀,特别是发生点蚀事故
  阻碍传热:微生物繁殖、代谢产生的黏液(象胶水一样具有很强黏性),与循环水中的悬浮物(补充水进入、冷却塔抽风冷却水洗涤空气灰尘进入)和微生物尸体等交织黏附在一起,随水流黏附在设备壁面,不久就会形成一层滑腻的垢层,即所谓的表面疏松多孔的软垢。附着在换热管壁的软垢,是热的不良导体(导热系数很小,只有不锈钢材的百分之一),因此会造成换热效果明显下降,影响生产负荷。
  发生点蚀:软垢层疏松多孔,为氧气的渗入形成良好通道,在循环水这个大的电导池中(富含盐),形成无数个小浓差电池,每个小电池就是一个点发生电化学反应,从而加速设备点蚀现象的发生,久之即发生纵深腐蚀穿孔事故
设备腐蚀,缩短使用寿命
  腐蚀:是指通过化学或电化学反应使金属被消耗破坏的现象。
  在循环水系统中,主要以溶解氧化学或电化学腐蚀为主,这种腐蚀除了会造成系统的水冷设备损坏或使用寿命减少外,还会由于腐蚀造成水冷器穿孔,从而引起工艺介质泄漏造成计划外的停车事故等,另外由于腐蚀会产生锈镏,会引起换热效率下降或管线堵塞等危害。

三、与水处理药剂投入关系
  系统水处理费用与补充水量成正比,因此提高浓缩倍率运行,是降低水处理费用的有效方法,但随浓缩倍率提高一定倍数时,又会使循环水中有害物质含量超标,因此须同时采取一定的辅助措施,如pH调节/加大旁流过滤处理等方法,使系统处理综合成本最低。
1、旁滤量设计要求
  循环冷却水在冷却塔中与空气接触散热时,空气中的灰尘、粉尘、孢子等悬浮固体被带入冷却水中,另外补充水进入循环水时也带入一部份固体杂物,它们使循环水的悬浮物、菌藻含量及其它污染物超出允许值,因此须设旁滤设施,对循环冷却水进行旁流过滤处理,以保证循环冷却水悬浮物含量指标保持在规定范围内,保持换热管壁干净。
四、硬垢形成原因:冷却水中富含碳酸氢钙等不稳定盐类,在换热管壁受热分解,即转变为碳酸钙等致密硬垢,规则沉积在换热管壁、冷却塔填料及系统管网等处。
  2、硬垢控制:换热器管壁硬垢沉积,是循环冷却水系统设备面临的最大问题之一,它直接对生产负荷造成影响;向循环水中投加少量的,适应系统水质的阻垢分散剂,即能使硬垢沉积问题得到解决。水处理剂服务商,根据系统补充水质及生产装置工艺特点,通过实验室模拟系统试验,筛选出最适合阻垢缓蚀剂配方,并提供及时专业的技术服务,能使硬垢沉积问题得到很好解决。如维邦研发的WB-711/WB-712/WB-713等系列阻垢缓蚀剂,具有优异的阻垢分散性能,循环水中Ca2+含量在2000mg/L(以CaCO3计)左右稳定而不发生沉积。
  3、粘泥软垢形成原因:产粘液微生物代谢、悬浮物、一定的水流速度、换热管壁粗糙度,四个条件形成粘泥软垢。后面两个条件是系统客观存在,解决办法只能从微生物和悬浮物着手解决。
  4、 微生物控制:筛选适合的杀菌灭藻剂,投入适当的水处理杀菌费用,使循环水中微生物含量控制规定范围内,将微生物代谢粘液保持允许范围,防止粘泥软垢的形成。
  5、 悬浮物控制:增设旁流过滤系统(系统浓缩倍率高/悬浮物高时辅助使用),滤除循环水中悬浮物,控制在规定范围内,避免悬浮物与微生物黏液相互作用,在系统内累积而沉积换热管内,形成软垢,阻止传热,同时形成电化学腐蚀。
  6、腐蚀形成原因:腐蚀是指通过化学或电化学反应使金属被消耗破坏的现象。冷却水中的溶解氧与设备接触形成腐蚀电池,发生如下反应,促使金属不断溶解而被腐蚀。
在阳极区 Fe=Fe2++2e
在阴极区 ?O2+H2O+2e=2OH-
在水中 Fe2++2OH-=Fe(OH)2 Fe(OH)2+ O2 = Fe(OH)3
   7、 腐蚀控制:向循环水中投加较低量,适应系统水质的复合缓蚀剂,即能使设备腐蚀控制在标准规定范围。对于碳钢不锈钢系统,优选阻垢缓蚀剂配方时,即已复配入配方中,能解决设备腐蚀问题,如果系统中有铜设备,则应另添加铜缓蚀剂,如维邦WB-301系列。

  五、 稳定生产负荷:换热器结垢刚开始是缓慢逐步沉积的,只要沉积薄薄的一层垢后,沉积速度即越来越快,使传热速率迅速下降,对生产负荷构成明显影响(热电厂冷凝器最明显),我们按结垢使负荷隐形平均下降2%计算,如果进行科学水质稳定处理,则负荷稳定,即视为产出2%。
  减少停车处理次数:生产装置大修周期一般为一年半、两年、甚至两年以上,大检修期同时对冷却水系统进行检修、清洗处理。而未进行水质稳定处理,设备产生结垢、腐蚀和滋生生物粘泥周期大大缩短,半年甚至三个月就要处理一次。停车造成停车损失,清洗需要药剂,也需要时间,同时花费大量人力,造成经济损失。
  化工工厂都是是用水大户,随环保要求越来越高,水资源日趋紧张,新鲜水成本也越来越高,节约用水对工厂已非常重要,可节约较大一笔费用。如济宁高科化工南极水研发的ss水处理药剂就严格按维邦提供的水质稳定处理方案对系统运行管理,能确保系统高负荷稳定运行,同时节约用水约30%。但目前有的工厂单从节约用水考虑,冷却水系统基本不排污,使循环水很多参数严重超标,导致系统短期结垢,不得不停车处理,造成停车损失,此法不可取。
 
这个家伙什么也没有留下。。。

水处理

返回版块

41.84 万条内容 · 1361 人订阅

猜你喜欢

阅读下一篇

水解

水解酸化池的原理及作用作用:减小有机物分子量,产生不完全氧化的产物,有利于后续的好氧段处理。水解酸化一种生物氧化方式,在没有外源最终电子受体的条件下,化能异养型微生物细胞对能源有机化合物的氧化与内源的有机化合物的还原相耦合,一般并不发生经包含细胞色素等的电子传递链上的电子传递和电子传递磷酸化,而是通过底物(激酶的底物)水平磷酸化来获得代谢能ATP;能源有机化合物释放的电子一级电子载体NAD(nicotinamide adenine dinucleotide,一种转递电子的辅酶),以NADH的形式直接将电子交给内源的有机受体而再生成NAD,同时将后者还原成水解酸化产物(不完全氧化的产物,有利于后续的好氧段处理)。细胞中的NAD是有限的,如果作为一级电子载体的辅酶NAD不能得到再生,有效的电子载体就会愈来愈少,脱氢反应就不能持续进行下去了。因此辅酶NAD的再生是生物氧化(包括发酵)继续进行下去的必要条件。

回帖成功

经验值 +10